Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

The Stratospheric Pathway of La Niña

Loading...
Thumbnail Image

Full text at PDC

Publication date

2016

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

American Meteorological Society
Citations
Google Scholar

Citation

Abstract

A Northern Hemisphere (NH) polar stratospheric pathway for La Nina events is established during wintertime based on reanalysis data for the 1958-2012 period. A robust polar stratospheric response is observed in the NH during strong La Nina events, characterized by a significantly stronger and cooler polar vortex. Significant wind anomalies reach the surface, and a robust impact on the North Atlantic-European (NAE) region is observed. A dynamical analysis reveals that the stronger polar stratospheric winds during La Nina winters are due to reduced upward planetary wave activity into the stratosphere. This finding is the result of destructive interference between the climatological and the anomalous La Nina tropospheric stationary eddies over the Pacific-North American region. In addition, the lack of a robust stratospheric signature during La Nina winters reported in previous studies is investigated. It is found that this is related to the lower threshold used to detect the events, which signature is consequently more prone to be obscured by the influence of other sources of variability. In particular, the occurrence of stratospheric sudden warmings (SSWs), partly linked to the phase of the quasi-biennial oscillation, modulates the observed stratospheric signal. In the case of La Nina winters defined by a lower threshold, a robust stratospheric cooling is found only in the absence of SSWs. Therefore, these results highlight the importance of using a relatively restrictive threshold to define La Nina events in order to obtain a robust surface response in the NAE region through the stratosphere.

Research Projects

Organizational Units

Journal Issue

Description

© 2016 American Meteorological Society. We acknowledge the Japan Meteorological Agency for providing JRA-55 reanalysis data, the University of East Anglia Climatic Research Unit (CRU) for the TS3.21dataset, and the National Center for Environmental Prediction/Climate Prediction Center (NCEP/CPC) for the N3.4 index. M. I. and N. C. are supported by the Spanish Ministry of Economy and Competitiveness through the MATRES (CGL2012-34221) project and the European Project 603557 STRATOCLIM under Program FP7-ENV. 2013.6.1-2. The authors are grateful to R. García Herrera and D. Barriopedro for their helpful discussions and the editor and reviewers who helped improve the manuscript. This work was partially performed during a visit of M. I. at the Max Planck Institute for Meteorology, Hamburg, and M. I. acknowledges MPI-M for the support.

Unesco subjects

Keywords

Collections