On special partitions of [0, 1] and lineability within families bounded variation functions
dc.contributor.author | Bernal González, L. | |
dc.contributor.author | Fernández Sánchez, j: | |
dc.contributor.author | Seoane Sepúlveda, Juan Benigno | |
dc.contributor.author | Trutschnig, W. | |
dc.date.accessioned | 2023-06-21T02:18:01Z | |
dc.date.available | 2023-06-21T02:18:01Z | |
dc.description.abstract | We show that there exists large algebraic structures (vector spaces, algebras, closed subspaces, etc.) formed entirely (except for 0), on one hand, by singular, nowhere monotonic functions on [0, 1] and, on the other hand, by absolutely continuous nowhere monotonic functions. Several tools, of independent interest, related to obtaining special partitions of R into uncountable collections will be provided and used. The results obtained in this note are either new or improved version of already existing ones. | |
dc.description.department | Depto. de Análisis Matemático y Matemática Aplicada | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | FALSE | |
dc.description.sponsorship | Ministerio de Ciencia e Innovación (MICINN) | |
dc.description.sponsorship | Junta de Andalucía | |
dc.description.sponsorship | WISS 2025 project | |
dc.description.status | unpub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/73438 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/65270 | |
dc.language.iso | eng | |
dc.relation.projectID | PGC2018-098474-B-C21; PGC2018- 097286-B-I00 | |
dc.relation.projectID | FQM-127 Grant P20-00637 | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 512.642 | |
dc.subject.keyword | Lineability | |
dc.subject.keyword | Spaceability | |
dc.subject.keyword | Bounded variation function | |
dc.subject.keyword | Singular function | |
dc.subject.keyword | Absolutely continuous function | |
dc.subject.keyword | Nowhere monotonic function | |
dc.subject.keyword | Espacios vectoriales | |
dc.subject.ucm | Matemáticas (Matemáticas) | |
dc.subject.ucm | Análisis matemático | |
dc.subject.unesco | 12 Matemáticas | |
dc.subject.unesco | 1202 Análisis y Análisis Funcional | |
dc.title | On special partitions of [0, 1] and lineability within families bounded variation functions | |
dc.type | journal article | |
dcterms.references | 1] C. R. Adams, The space of functions of bounded variation and certain general spaces, Trans. Amer. Math. Soc. 40 (1936), no. 3, 421–438, DOI 10.2307/1989632. [2] A. Aizpuru, C. Pérez-Eslava, and J. B. Seoane-Sep´ulveda, Linear structure of sets of divergent sequences and series, Linear Algebra Appl. 418 (2006), no. 2-3, 595–598, DOI 10.1016/j.laa.2006.02.041. [3] R. M. Aron, L. Bernal González, D. M. Pellegrino, and J. B. Seoane Sep´ulveda, Lineability: the search for linearity in mathematics, Monographs and Research Notes in Mathematics, CRC Press, Boca Raton, FL, 2016. [4] R. M. Aron, F. J. García-Pacheco, D. Pérez-García, and J. B. Seoane-Sepúlveda, On dense-lineability of sets of functions on R, Topology 48 (2009), no. 2-4, 149–156, DOI 10.1016/j.top.2009.11.013. [5] R. M. Aron, V. I. Gurariy, and J. B. Seoane-Sep´ulveda, Lineability and spaceability of sets of functions on R, Proc. Amer. Math. Soc. 133 (2005), no. 3, 795–803. [6] R. M. Aron and J. B. Seoane-Sepúlveda, Algebrability of the set of everywhere surjective functions on C, Bull. Belg. Math. Soc. Simon Stevin 14 (2007), no. 1, 25–31. [7] M. Balcerzak, A. Bartoszewicz, and M. Filipczak, Nonseparable spaceability and strong algebrability of sets of continuous singular functions, J. Math. Anal. Appl. 407 (2013), no. 2, 263–269, DOI 10.1016/j.jmaa.2013.05.019. [8] F. Bastin, J. A. Conejero, C. Esser, and J. B. Seoane-Sep´ulveda, Algebrability and nowhere Gevrey differentiability, Israel J. Math. 205 (2015), no. 1, 127–143, DOI 10.1007/s11856-014-1104-1. [9] L. Bernal-González, J. Fernández-Sánchez, M. E.Martínez-Gómez, and J. B. Seoane-Sepúlveda, Banach Spaces and Banach Lattices of singular functions, Studia Math. 260 (2021), 167–193, DOI 10.4064/sm200419-7-9. [10] L. Bernal-González, D. Pellegrino, and J. B. Seoane-Sep´ulveda, Linear subsets of nonlinear sets in topological vector spaces, Bull. Amer. Math. Soc. (N.S.) 51 (2014), no. 1, 71–130, DOI 10.1090/S0273-0979-2013-01421-6. MR3119823 [11] A. M. Bruckner, J. B. Bruckner, and B. S. Thomson, Real Analysis (Create Space Independent Publishing Plat�form, ed.), 2008. [12] D. Cariello and J. B. Seoane-Sepúlveda, Basic sequences and spaceability in `p spaces, J. Funct. Anal. 266 (2014), no. 6, 3797–3814, DOI 10.1016/j.jfa.2013.12.011. [13] J. Carmona Tapia, J. Fernández-Sánchez, J. B. Seoane-Sepúlveda, and W. Trutschnig, Lineability, spaceability, and latticeability of subsets of C([0, 1]) and Sobolev spaces, Rev. R. Acad. Cienc. Exactas F´ıs. Nat. Ser. A Mat. RACSAM 116 (2022), no. 3, Paper No. 113, DOI 10.1007/s13398-022-01256-y. [14] K. C. Ciesielski, J. L. G´amez-Merino, D. Pellegrino, and J. B. Seoane-Sep´ulveda, Lineability, spaceabil�ity, and additivity cardinals for Darboux-like functions, Linear Algebra Appl. 440 (2014), 307–317, DOI 10.1016/j.laa.2013.10.033. [15] K. C. Ciesielski and J. B. Seoane-Sep´ulveda, A century of Sierpi´nski-Zygmund functions, Rev. R. Acad. Cienc. Exactas F´ıs. Nat. Ser. A Mat. RACSAM 113 (2019), no. 4, 3863–3901, DOI 10.1007/s13398-019-00726-0. [16] , Differentiability versus continuity: restriction and extension theorems and monstrous examples, Bull. Amer. Math. Soc. (N.S.) 56 (2019), no. 2, 211–260, DOI 10.1090/bull/1635. [17] E. de Amo, M. Díaz Carrillo, and J. Fernández-Sánchez, Singular functions with applications to fractal dimensions and generalized Takagi functions, Acta Appl. Math. 119 (2012), 129–148, DOI 10.1007/s10440-011-9665-z [18] P. H. Enflo, V. I. Gurariy, and J. B. Seoane-Sep´ulveda, Some results and open questions on spaceability in function spaces, Trans. Amer. Math. Soc. 366 (2014), no. 2, 611–625, DOI 10.1090/S0002-9947-2013-05747-9. [19] K. Falconer, Fractal geometry, 3rd ed., John Wiley & Sons, Ltd., Chichester, 2014. Mathematical foundations and applications. [20] J. Fern´andez-S´anchez, D. L. Rodr´ıguez-Vidanes, J. B. Seoane-Sep´ulveda, and W. Trutschnig, Lineability, dif�ferentiable functions and special derivatives, Banach J. Math. Anal. 15 (2021), no. 1, Paper No. 18, 22, DOI 10.1007/s43037-020-00103-9. [21] J. Fern´andez-S´anchez and W. Trutschnig, Some members of the class of (quasi-)copulas with given diago�nal from the Markov kernel perspective, Comm. Statist. Theory Methods 45 (2016), no. 5, 1508–1526, DOI 10.1080/03610926.2013.864856. [22] J. Fern´andez-S´anchez, S. Maghsoudi, D. L. Rodr´ıguez-Vidanes, and J. B. Seoane-Sep´ulveda, Classical vs. non�Archimedean analysis: an approach via algebraic genericity, Rev. R. Acad. Cienc. Exactas F´ıs. Nat. Ser. A Mat. RACSAM 116 (2022), no. 2, Paper No. 72, 27, DOI 10.1007/s13398-022-01209-5. [23] J. Fern´andez-S´anchez, D. L. Rodr´ıguez-Vidanes, J. B. Seoane-Sep´ulveda, and W. Trutschnig, Lineability and K�linear discontinuous functions, Linear Algebra Appl. 645 (2022), 52–67, DOI 10.1016/j.laa.2022.03.007. [24] J. L. G´amez-Merino, G. A. Mu˜noz-Fern´andez, V. M. S´anchez, and J. B. Seoane-Sep´ulveda, Sierpi´nski-Zygmund functions and other problems on lineability, Proc. Amer. Math. Soc. 138 (2010), no. 11, 3863–3876. [25] V. I. Gurari˘ı, Subspaces and bases in spaces of continuous functions, Dokl. Akad. Nauk SSSR 167 (1966), 971–973 (Russian). [26] C. Ho and S. Zimmerman, On certain dense, uncountable subsets of the real line, Amer. Math. Monthly 125 (2018), no. 4, 339–346, DOI 10.1080/00029890.2018.1420334. [27] M. Iosifescu and C. Kraaikamp, Metrical theory of continued fractions, Mathematics and its Applications, vol. 547, Kluwer Academic Publishers, Dordrecht, 2002. [28] I. S. Kats, Singular strictly increasing functions and a segment partition problem, Mat. Zametki 81 (2007), no. 3, 341–347, DOI 10.1134/S0001434607030042 (Russian, with Russian summary); English transl., Math. Notes 81 (2007), no. 3-4, 302–307. [29] Y. Katznelson and K. Stromberg, Everywhere differentiable, nowhere monotone, functions, Amer. Math. Monthly 81 (1974), no. 4, 349–354. [30] A. Klenke, Probability theory, 3rd ed., Universitext, Springer, Cham, 2020. [31] J. Khodabandehlou, S. Maghsoudi, and J. B. Seoane-Sep´ulveda, Lineability, continuity, and antiderivatives in the non-Archimedean setting, Canad. Math. Bull. 64 (2021), no. 3, 638–650, DOI 10.4153/S0008439520000715. [32] B. Levine and D. Milman, On linear sets in space C consisting of functions of bounded variation, Comm. Inst. Sci. Math. M´ec. Univ. Kharkoff [Zapiski Inst. Mat. Mech.] (4) 16 (1940), 102–105 (Russian, with English summary). [33] G. A. Mu˜noz-Fern´andez, N. Palmberg, D. Puglisi, and J. B. Seoane-Sep´ulveda, Lineability in subsets of measure and function spaces, Linear Algebra Appl. 428 (2008), no. 11-12, 2805–2812, DOI 10.1016/j.laa.2008.01.008. [34] I. P. Natanson, Theory of Functions of Real Variable, Dover Publications, Mineola, New York, 2016. [35] J. Parad´ıs, P. Viader, and L. Bibiloni, A total order in (0, 1] defined through a ‘next’ operator, Order 16 (1999), no. 3, 207–220 (2000), DOI 10.1023/A:1006441703404. [36] W. Rudin, Homogeneity problems in the theory of Cech compactifications ˇ , Duke Math. J. 23 (1956), 409–419. [37] W. Rudin, Real and complex analysis, 3rd ed., McGraw-Hill Book Co., New York, 1987. MR924157 [38] R. Salem, On some singular monotonic functions which are strictly increasing, Trans. Amer. Math. Soc. 53 (1943), 427–439, DOI 10.2307/1990210. [39] J. B. Seoane-Sepúlveda, Chaos and lineability of pathological phenomena in analysis, ProQuest LLC, Ann Arbor, MI, 2006. Thesis (Ph.D.)–Kent State University. [40] S. M. Srivastava, A course on Borel sets, Graduate Texts in Mathematics, vol. 180, Springer-Verlag, New York, 1998. [41] L. Tak´acs, An increasing continuous singular function, Amer. Math. Monthly 85 (1978), no. 1, 35–37, DOI 10.2307/2978047. [42] A. C. M. Van Rooij and W. H. Schikhof, A Second Course on Real Functions, Cambridge University Press, Cam�bridge, 1982. [43] P. Walters, An introduction to ergodic theory, Graduate Texts in Mathematics, vol. 79, Springer-Verlag, New York�Berlin, 1982. [44] S. Zimmerman and C. Ho, Partitioning the real line into an uncountable collection of everywhere uncountably dense sets, Amer. Math. Monthly 126 (2019), no. 9, 825–834, DOI 10.1080/00029890.2019.1640529 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | e85d6b14-0191-4b04-b29b-9589f34ba898 | |
relation.isAuthorOfPublication.latestForDiscovery | e85d6b14-0191-4b04-b29b-9589f34ba898 |
Download
Original bundle
1 - 1 of 1