Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA Disculpen las molestias.
 

AKNS hierarchy, self-similarity, string equations and the Grassmannian

dc.contributor.authorGuil Guerrero, Francisco José
dc.contributor.authorMañas Baena, Manuel Enrique
dc.date.accessioned2023-06-20T20:09:26Z
dc.date.available2023-06-20T20:09:26Z
dc.date.issued1994-03-21
dc.description©IOP Publishing LTD. One of the authors (MM) is indebted to Dr.P.Guha for initial collaboration and to Prof.L.Bonora and Prof.G.Wilson for providing their papers.
dc.description.abstractIn this paper the Galilean, scaling and translational self-similarity conditions for the AKNS hierarchy are analysed geometrically in terms of the infinite-dimensional Grassmannian. The string equations of the one-matrix model correspond to the Galilean self-similarity condition for this hierarchy. We describe, in terms of the initial data for the zero-curvature 1 -form of the AKNS hierarchy, the moduli space of these self-similar solutions in the Sato Grassmannian. As a by-product we characterize the points in the Segal-Wilson Grassmannian corresponding to the Sachs rational solutions of the AKNS equation and to the Nakamura-Hirota rational solutions of the NLS equation.
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/32527
dc.identifier.doi10.1088/0305-4470/27/6/034
dc.identifier.issn0305-4470
dc.identifier.officialurlhttp://dx.doi.org/10.1088/0305-4470/27/6/034
dc.identifier.relatedurlhttp://iopscience.iop.org
dc.identifier.relatedurlhttp://arxiv.org/abs/hep-th/9307017
dc.identifier.urihttps://hdl.handle.net/20.500.14352/59704
dc.issue.number6
dc.journal.titleJournal of physics A-Mathematical and General
dc.language.isoeng
dc.page.final2142
dc.page.initial2129
dc.publisherIOP Publishing LTD
dc.rights.accessRightsopen access
dc.subject.cdu51-73
dc.subject.keywordOrdinary differential-equations
dc.subject.keywordRational coefficients
dc.subject.keywordTau-function
dc.subject.keywordDeformation
dc.subject.keywordAlgebras
dc.subject.ucmFísica-Modelos matemáticos
dc.subject.ucmFísica matemática
dc.titleAKNS hierarchy, self-similarity, string equations and the Grassmannian
dc.typejournal article
dc.volume.number27
dcterms.references[1] M.Ablowitz and P.Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering London Math.Soc.Lec.Not.Ser. 149, Cambridge University Press (1991), Cambridge. [2] M.Ablowitz, D.Kaup, A.Newell, and H.Segur, Phys.Rev.Lett. 31 (1973) 125; V.Zakharov and A.Shabat, Func.Anal.Appl. 8 (1974) 43, Func.Annal.Appl. 13 (1979) 166. [3] M.Bergveld and A. ten Kroode, J.Math.Phys. 29 (1988) 1308. [4] E.Brezin and V.Kazakov, Phys.Lett. 236B (1990) 144; M.Douglas and M.Shenker, Nucl.Phys. B335 (1990) 685; D.Gross and A.Migdal, Phys.Rev.Lett. 64 (1990) 127. [5] L.Bonora and C.Xiong, Phys.Lett. 285B (1992) 191; Matrix models without scaling limit Int.J.Mod.Phys.A (1993) to appear. [6] S.Dalley, C.Johnson, and T.Morris, Nuc.Phys. B368 (1992) 625, 655; S.Dalley, preprint PUPT, 1290 (1991); C.Johnson, T.Morris, and A.WΞätterstam, Phys.Lett. 291B (1992) 11; C.Johnson, T.Morris, and P.White, Phys.Lett. 292B (1992) 283; S.Dalley, C.Johnson, T.Morris, and A.Wättersman, Mod.Phys.Lett. A29 (1992) 2753; A. Wättersman, Phys.Lett. 263B (1991) 51. [7] L.Dickey, Another Example of a τ–Function in Hamiltonian Systems, Transformations Groups and Spectral Transform Methods edited by J.Harnad and J.Marsden, Les publications CMR, Université de Montréal, (1990) Montréal; J.Math.Phys. 32 (1991) 2996. [8] L.Dickey, Commun.Math.Phys. 82 (1981) 345. [9] V.Drinfel’d and V.Sokolov, J.Sov.Math. 30 (1985) 1975. [10] B.Dubrovin, Fun.Anal.Appl. 11 (1977) 265. [11] L.Faddeev and L.Takhtajan, Hamiltonian Methods in the Theory of Solitons Springer Verlag (1987), Berlin. [12] H.Flaschka, A.Newell, and T.Ratiu, Physica 9D (1983) 300. [13] F.Guil and M.Mañas, Lett.Math.Phys. 19 (1990) 89; M.Mañas, Problemas de factorización y sistemas integrables PhD thesis, Universidad Complutense de Madrid (1991), Madrid. [14] F.Guil and M.Mañas, Self–similarity in the KdV hierarchy. Geometry of the string equations in Nonlinear Evolution Equations and Dynamical Systems’92 edited by V.Mahankov, O.Pashaev, and I.Puzynin, World Scientific (1992), Singapure; Strings equations for the KdV hierarchy and the Grassmannian J.Phys.A: Math. & Gen. (1993) to appear; M.Mañas and P.Guha, String equations for the unitary matrix model and the periodic flag manifold (1993) to appear. [15] V.Kac and A.Schwarz, Phys.Lett. 257B (1991) 329; A.Schwarz, Mod.Phys.Lett. A6 (1991) 611 and 2713; K.Anagnostopoulos, M.Bowick, and A.Schwarz, Commun.Math.Phys. 148 (1992) 148. [16] W.Magnus, F.Oberhettinger, and R.Soni, Formulas and Theorems for the Special Functions of Mathematical Physics Springer Verlag (1966), Berlin. [17] A.Nakamura and R.Hirota, J.Phys.Soc.Jpn. 54 (1985) 491. [18] A.Newell, Solitons in Mathematics and Physics SIAM (1985), Philadelphia. [19] S.Novikov, Func.Anal.Appl. 24 (1991) 296. [20] V.Periwal and D.Shevitz, Phys.Rev.Lett. 64 (1990) 1326; Nuc.Phys. B344 (1990) 731; K.Anagnostopoulos, M.Bowick, and N.Ishisbashi, Mod.Phys.Lett. A6 (1991) 2727. [21] A.Pressley and G.Segal, Loop groups Oxford University Press (1985), Oxford. [22] E.Previato, Duke Math.J. 52 (1985) 329. [23] R.Sachs, Physica D30 (1988) 1; Polynomial τ–functions for the AKNS hierarchy in Theta functions—Bowdoin 1987. Part 1 Proc.Sympos. Pure Maths. 49, part 1, 133, AMS (1989) Providence. [24] M.Sato, RIMS Kokyuroku 439 (1981) 30; The KP hierarchy and infinite–dimensional Grassmann manifolds in Theta functions—Bowdoin 1987. Part 1 Proc.Sympos. Pure Maths. 49, part 1, 51, AMS (1989) Providence. [25] G.Segal and G.Wilson, Publ.Math.IHES 61 (1985) 1. [26] G.Wilson, The τ–functions of the g–AKNS hierarchy, Proceedings of Verdier memorial conference, Y.Kosman–Schwarzbach et al Eds. Birkhäuser (1993) Berlin.
dspace.entity.typePublication
relation.isAuthorOfPublication07b29370-82af-4544-a17f-da10a1ba1805
relation.isAuthorOfPublication0d5b5872-7553-4b33-b0e5-085ced5d8f42
relation.isAuthorOfPublication.latestForDiscovery0d5b5872-7553-4b33-b0e5-085ced5d8f42

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
mañas60preprint.pdf
Size:
237.47 KB
Format:
Adobe Portable Document Format

Collections