On compactness theorems for logarithmic interpolation methods
| dc.contributor.author | Besoy, Blanca F. | |
| dc.date.accessioned | 2023-06-17T13:27:41Z | |
| dc.date.available | 2023-06-17T13:27:41Z | |
| dc.date.issued | 2019 | |
| dc.description.abstract | Let (A0;A1) be a Banach couple, (B0;B1) a quasi-Banach couple, 0 < q <= ∞ and T a linear operator. We prove that if T : A0 -> B0 is bounded and T : A1 -> B1 is compact, then the interpolated operator by the logarithmic method T : (A0,A1)1;q;A -> (B0;B1)1;q;A is compact too. This result allows the extension of some limit variants of Krasnosel'skii's compact interpolation theorem. | |
| dc.description.department | Depto. de Análisis Matemático y Matemática Aplicada | |
| dc.description.faculty | Fac. de Ciencias Matemáticas | |
| dc.description.refereed | TRUE | |
| dc.description.sponsorship | Ministerio de Ciencia e Innovación (MICINN)/FEDER | |
| dc.description.sponsorship | Ministerio de Educación, Cultura y Deporte | |
| dc.description.status | submitted | |
| dc.eprint.id | https://eprints.ucm.es/id/eprint/56936 | |
| dc.identifier.issn | 0137-6934 | |
| dc.identifier.officialurl | https://www.impan.pl/pl/wydawnictwa/banach-center-publications | |
| dc.identifier.relatedurl | https://www.impan.pl/ | |
| dc.identifier.uri | https://hdl.handle.net/20.500.14352/13541 | |
| dc.journal.title | Banach Center Publications | |
| dc.language.iso | eng | |
| dc.publisher | Polskiej Akademii Nauk, Instytut Matematyczny (Polish Academy of Sciences, Institute of Mathematics) | |
| dc.relation.projectID | MTM2017-84508-P | |
| dc.relation.projectID | FPU16/02420 | |
| dc.rights.accessRights | open access | |
| dc.subject.cdu | 517.98 | |
| dc.subject.keyword | Logarithmic interpolation methods | |
| dc.subject.keyword | compact operators | |
| dc.subject.keyword | Lorentz-Zygmund spaces. | |
| dc.subject.ucm | Análisis funcional y teoría de operadores | |
| dc.title | On compactness theorems for logarithmic interpolation methods | |
| dc.type | journal article | |
| dcterms.references | [1] C. Bennett and R. Sharpley, Interpolation of Operators, Academic Press, New York, 1988. [2] J. Bergh and J. Lofstrom, Interpolation Spaces. An introduction, Springer, Berlin, 1976. [3] B.F. Besoy and F. Cobos, Duality for logarithmic interpolation spaces when 0 < q < 1 and applications, J. Math. Anal. Appl. 466 (2018) 373-399. [4] Y. Brudnyi and N. Krugljak, Interpolation Functors and Interpolation Spaces, Vol. 1, North-Holland, Amsterdam, 1991. [5] F. Cobos, L.M. Fernández-Cabrera, T. K�uhn and T. Ullrich, On an extreme class of real interpolation spaces, J. Funct. Anal. 256 (2009) 2321-2366. [6] F. Cobos, L.M. Fernández-Cabrera and A. Martínez, On a paper of Edmunds and Opic on limiting interpolation of compact operators between Lp spaces, Math. Nachr. 288 (2015) 167-175. [7] F. Cobos, L.M. Fernández-Cabrera and A. Martínez, Estimates for the spectrum on logarithmic interpolation spaces, J. Math. Anal. Appl. 437 (2016) 292-309. [8] F. Cobos, L.M. Fernández-Cabrera and A. Martínez, Interpolation of compact bilinear operators among quasi-Banach spaces and applications, Math. Nachr. (2018). [9] F. Cobos, L.M. Fernández-Cabrera and A. Martínez, Complex interpolation, minimal methods and compact operators, Math. Nachr. 263-264 (2004) 67-82 [10] F. Cobos, L.M. Fernández-Cabrera, and M. Mastylo, Abstract limit J-spaces, Journal of the London Mathematical Society, 82 (2010) 501-525. [11] F. Cobos and T. K�uhn, Equivalence of K-and J-methods for limiting real interpolation spaces, J. Funct. Anal. 261 (2011) 3696-3722. [12] F. Cobos, T. Kuhn and T. Schonbek, One-sided compactness results for Aronszajn-Gagliardo functors, J. Funct. Anal. 106 (1992) 274-313. [13] F. Cobos and L.E. Persson, Real interpolation of compact operators between quasi-Banach spaces, Math. Scand. 82 (1998) 138-160. [14] F. Cobos and A. Segurado, Description of logarithmic interpolation spaces by means of the J-functional and applications, J. Funct. Anal. 268 (2015) 2906-2945. [15] M. Cwikel, Real and complex interpolation and extrapolation of compact operators, Duke Math. J. 65 (1992) 333-343. [16] D.E. Edmunds and W.D. Evans, Hardy Operators, Function Spaces and Embeddings, Springer, Berlin 2004. [17] D.E. Edmunds and B. Opic, Limiting variants of Krasnoselskii's compact interpolation theorem, J. Funct. Anal.266 (2014) 3265-3285. [18] W.D. Evans and B. Opic, Real Interpolation with Logarithmic Functors and Reiteration, Canad. J. Math. 52 (2000) 920-960. [19] W.D. Evans, B. Opic and L. Pick, Real Interpolation with logarithmic functors, J. Inequal. Appl. 7 (2002). [20] M.A. Krasnosel'skii, On a theorem of M. Riesz, Dokl. Akad. Nauk SSSR. 131 (1960) 246-248. [21] J.L. Lions and J. Peetre, Sur une classe d'espaces d'interpolation, Publ. Math. Inst. Hautes Etudes Sci. 19 (1964) 5-68. [22] B. Opic and L. Pick, On generalized Lorentz-Zygmund spaces, Math. Inequal. Appl. 2 (1999) 391-467. [23] A. Persson, Compact linear mappings between interpolation spaces, Ark. Mat. 5 (1964) 215-219. [24] H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North-Holland, Amsterdam, (1978). | |
| dspace.entity.type | Publication |
Download
Original bundle
1 - 1 of 1


