Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Geometric characterizations of p-Poincaré inequalities in the metric setting

Loading...
Thumbnail Image

Full text at PDC

Publication date

2016

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Universitat Aut�noma de Barcelona
Citations
Google Scholar

Citation

Abstract

We prove that a locally complete metric space endowed with a doubling measure satisfies an infinity-Poincare inequality if and only if given a null set, every two points can be joined by a quasiconvex curve which "almost avoids" that set. As an application, we characterize doubling measures on R satisfying an infinity-Poincare inequality. For Ahlfors Q-regular spaces, we obtain a characterization of p-Poincare inequality for p > Q in terms of the p-modulus of quasiconvex curves connecting pairs of points in the space. A related characterization is given for the case Q - 1 < p <= Q.

Research Projects

Organizational Units

Journal Issue

Description

En el año 2013 se publicó el preprint en Report nº 15, el Pdf se puede ver en este registro.

Unesco subjects

Keywords

Collections