Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Volatility Spillovers from the US to Australia and China across the GFC

dc.contributor.authorAllen, David E.
dc.contributor.authorMcAleer, Michael
dc.contributor.authorPowell, R. J.
dc.contributor.authorSingh, A. K.
dc.date.accessioned2023-06-20T09:15:08Z
dc.date.available2023-06-20T09:15:08Z
dc.date.issued2012-12
dc.description.abstractThis paper features an analysis of volatility spillover eects from the US market, represented by the S&P500 index to the Australian capital market as represented by the Australian S&P200 for a period running from 12th September 2002 to 9th September 2012. This captures the impact of the Global Financial Crisis (GFC). The GARCH analysis features an exploration of whether there are any spillover eects in the mean equations as well as in the variance equations. We adopt a bi-mean equation to model the conditional mean in the Australian markets plus an ARMA model to capture volatility spillovers from the US. We also apply a Markov Switching GARCH model to explore the existence of regime changes during this period and we also explore the non-constancy of correlations between the markets and apply a moving window of 120 days of daily observations to explore time-varying conditional and tted correlations. There appears to be strong evidence of regime switching behaviour in the Australian market and changes in correlations between the two markets particularly in the period of the GFC. We also apply a tri-variate Cholesky-GARCH model to include potential eects from the Chinese market, as represented by the Hang Seng Index
dc.description.facultyFac. de Ciencias Económicas y Empresariales
dc.description.facultyInstituto Complutense de Análisis Económico (ICAE)
dc.description.refereedFALSE
dc.description.sponsorshipAustralian Research Council
dc.description.sponsorshipNational Science Council, Taiwan
dc.description.sponsorshipJapan Society for the Promotion of Science.
dc.description.statusunpub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/17574
dc.identifier.relatedurlhttps://www.ucm.es/icae
dc.identifier.urihttps://hdl.handle.net/20.500.14352/49130
dc.issue.number30
dc.language.isoeng
dc.page.total16
dc.relation.ispartofseriesDocumentos de Trabajo del Instituto Complutense de Análisis Económico (ICAE)
dc.rightsAtribución-NoComercial 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by-nc/3.0/es/
dc.subject.keywordVolatility spillovers
dc.subject.keywordMarkov-switching GARCH
dc.subject.keywordCholesky-GARCH
dc.subject.keywordTime-varying correlations.
dc.subject.ucmEconometría (Economía)
dc.subject.unesco5302 Econometría
dc.titleVolatility Spillovers from the US to Australia and China across the GFC
dc.typetechnical report
dc.volume.number2012
dcterms.referencesAlexander, C. (2001) Market Models: A Guide to Financial Data Analysis. Wiley, New York. Barth, J.R., R. Koepp, and Z. Zhou (2004) Banking Reform in China: Catalyzing the Nation's Financial Future, (2004) Available at SSRN: http://papers.ssrn.com/sol3/papers.cfm?abstract_id=548405. Bauwens, L., S. Laurent, and J.V.K. Rombouts (2003) Multivariate GARCH models: A survey, CORE Discussion Paper No. 2003/31. Available at SSRN: http://ssrn.com/abstract=411062. Bollerslev, T. (1986) Generalized autoregressive conditional heteroscedasticity, Journal of Econometrics, 31, 307-327. Bollerslev, T. (1990) Modelling the coherence in short-run nominal exchange rates: A multivariate generalized ARCH model, Review of Economics and Statistics, 72, 498-505. Chang, C., Tsay, R.S. (2010) Estimation of covariance matrix via sparse Cholesky factor with Lasso. J. Stat. Plan. Inference, 40, 3858 -3873. Dellaportos, P., M. Pourahmadi (2012) Cholesky-GARCH models with applications to finance, Statistical Computing, 22, 849-855. Engle, R.F. (1982) Autoregressive conditional heteroskedasticity with estimates of the variance of United Kingdom inflation, Econometrica, 50, 987-1008. Engle, R. F. GARCH 101: An Introduction to the Use of Arch/Garch Models in Applied Econometrics. Journal of Economic Perspectives,15, 4 (2001) 157-168. Engle, R.F., V.K. Ng (1993) Time-varying volatility and the dynamic behavior of the term structure, Journal of Money, Credit and Banking, 25(3), 336-349. Gokcan, S. (2000) Forecasting volatility of emerging stock markets: linear versus non-linear GARCH models, Journal of Forecasting 19, 499-504. Glosten, L.R., R. Jagannathan, D. Runkle (1993) On the relation between the expected value and the volatility of the nominal excess return on stocks, Journal of Finance, 48, 1779-1801. Hamao, Y., Masulis, R.W., Ng, V. (1990) Correlations in price changes and volatility across international stock markets, Review of Financial Studies, 3(2), 281-307. Harris, R.D.F., E. Stoja, J. Tucker (2007) A simplified approach to modeling the co-movement of asset returns, Journal of Futures Markets, 27(6), 575-598. Harvey, C.R., A.R. Siddique (1999) Autoregressive conditional skewness, Fuqua School of Business Working Paper No. 9604, Available at SSRN: http://ssrn.com/abstract=61332 or doi:10.2139/ssrn.61332. Johansson, A.C., C. Ljungwall (2009) Spillover effects among the Greater China stock markets, World Development, 37, 4, 839-851. Lima, L.R., B.P. Neri (2007) Comparing value-at-risk methodologies, Brazilian Review of Econometrics, 27(1), 1-25. Ling, S. and M. McAleer (2003) Asymptotic theory for a vector ARMA-GARCH model, Econometric Theory, 19(2), 280-310. McAleer, M. (2005) Automated inference and learning in modeling financial volatility, Econometric Theory, 21, 232-261. McAleer, M., Chan, F., Hoti, S., Lieberman, O. (2008) Generalized autoregressive conditional correlation, Econometric Theory, 24(6), 1554-1583. McAleer, M., F. Chan, D. Marinova (2007) An econometric analysis of asymmetric volatility: Theory and application to patents, Journal of Econometrics, 139, 259-284. Manera, M., M. McAleer, M. Grasso (2006) Modelling time-varying conditional correlations in the volatility of Tapis oil spot and forward returns, Applied Financial Economics, 16(7), 525-533. Manganelli, S., R.F. Engle (2001) Value at risk models in finance, ECB Working Paper No. 75 Available at SSRN: http://ssrn.com/abstract=356220 McAleer, M., S. Hoti, F. Chan (2009) Structure and asymptotic theory for multivariate asymmetric conditional volatility, Econometric Reviews, 28(5), 422-440. Moon G.H. W.C. Yu (2010) Volatility spillovers between the US and the China stock markets: Structural break test with symmetric and asymmetric GARCH approaches, Glob. Econ. Review, 39(2), 129-149. Nelson, D.B. (1991) Conditional heteroskedasticity in asset returns: A new approach, Econometrica, 59(2), 347-370. So, M.K., A.S.L.Tsui (2009) Dynamic modeling of tail risk: Applications to China, Hong Kong and other Asian markets, Asia-Pacific Financial Markets,16, 183-210. Tsay, R. (2005) Analysis of Financial Time Series, 3rd ed.Wiley, New York. Yao, Y. (2002) Perspective of China Stock Market Under Global Financial Uncertainty. Available at SSRN: http://ssrn.com/abstract=354540. Yi, Z., H. Chen, Sr., W.K Wong (2010) China's stock market integration with a leading power and a close neighbor. Available at SSRN:http://ssrn.com/abstract=1547665. Yilmaz, K. (2010) Return and volatility spillovers among the East Asian equity markets, Journal of Asian Economics, 21, 3, 304-313. Zhang, B., X. Li (2008) The asymmetric behaviour of stock returns and volatilities: Evidence from Chinese stock market, Applied Economics Letters, 15, 959-962.
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1230.pdf
Size:
621.69 KB
Format:
Adobe Portable Document Format