Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Well posedness of an integrodifferential kinetic model of Fokker-Planck type for angiogenesis.

Loading...
Thumbnail Image

Full text at PDC

Publication date

2016

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Amsterdam Elsevier Science 2000
Citations
Google Scholar

Citation

Carpio Rodríguez, A. M. & Duro, G. «Well Posedness of an Integrodifferential Kinetic Model of Fokker–Planck Type for Angiogenesis». Nonlinear Analysis: Real World Applications, vol. 30, agosto de 2016, pp. 184-212. DOI.org (Crossref), https://doi.org/10.1016/j.nonrwa.2016.01.002.

Abstract

Tumor induced angiogenesis processes including the effect of stochastic motion and branching of blood vessels can be described coupling a (nonlocal in time) integrodifferential kinetic equation of Fokker–Planck type with a diffusion equation for the tumor induced ingiogenic factor. The chemotactic force field depends on the flux of blood vessels through the angiogenic factor. We develop an existence and uniqueness theory for this system under natural assumptions on the initial data. The proof combines the construction of fundamental solutions for associated linearized problems with comparison principles, sharp estimates of the velocity integrals and compactness results for this type of kinetic and parabolic operators

Research Projects

Organizational Units

Journal Issue

Description

Unesco subjects

Keywords

Collections