Semipositive bundles and Brill-Noether theory
dc.contributor.author | Muñoz, Vicente | |
dc.contributor.author | Presas , Francisco | |
dc.date.accessioned | 2023-06-20T17:04:04Z | |
dc.date.available | 2023-06-20T17:04:04Z | |
dc.date.issued | 2003 | |
dc.description.abstract | A Lefschetz hyperplane theorem for the determinantal loci of a morphism, between two holomorphic vector bundles E and F over a complex manifold is proved, under the condition that E* x F is Griffiths k-positive. This result is applied to find some homotopy groups of the Brill-Noether loci for a generic curve. | |
dc.description.department | Depto. de Álgebra, Geometría y Topología | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/17152 | |
dc.identifier.doi | 10.1112/S0024609302001741 | |
dc.identifier.issn | 0024-6093 | |
dc.identifier.officialurl | http://journals.cambridge.org/abstract_S0024609302001741 | |
dc.identifier.relatedurl | http:www.cambridge.org | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/57717 | |
dc.issue.number | 2 | |
dc.journal.title | Bulletin of the London Mathematical Society | |
dc.language.iso | eng | |
dc.page.final | 190 | |
dc.page.initial | 179 | |
dc.publisher | London Mathematical society | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 512.7 | |
dc.subject.cdu | 5151.1 | |
dc.subject.keyword | Ample bundle | |
dc.subject.keyword | Lefschetz hyperplane theorem | |
dc.subject.keyword | Determinantal locus | |
dc.subject.keyword | Griffiths k-positive | |
dc.subject.keyword | Brill-Noether loci | |
dc.subject.ucm | Geometria algebraica | |
dc.subject.ucm | Topología | |
dc.subject.unesco | 1201.01 Geometría Algebraica | |
dc.subject.unesco | 1210 Topología | |
dc.title | Semipositive bundles and Brill-Noether theory | |
dc.type | journal article | |
dc.volume.number | 35 | |
dcterms.references | A. Andreotti and T. Fraenkel, The Lefschetz theorem on hyperplane sections, Annals Math. (2)69 (1959) 713–717. E. Arbarello, M. Cornalba, P. A. Griffiths and J. Harris, Geometry of algebraic curves, Springer-Verlag, New York (1985). R. Bott, On a theorem of Lefschetz, Michigan Math. J. 6 (1959) 211–216. O. Debarre, Lefschetz theorems for degeneracy loci, Bull. Soc. Math. France 128 (2000) 283–308. W. Fulton and R. Lazarsfeld, On the connectedness of degeneracy loci and special divisors, Acta Math. 146 (1981) 271–283. P. A. Griffiths, Hermitian differential geometry, Chern classes and positive vector bundles in Global Analysis,Princeton University Press, Princeton, N.J. (1969). Y-T. Siu, Complex-analyticity of harmonic maps, vanishing and Lefschetz theorems, J. Diff.Geom. 17 (1982) 55–138. P. Griffiths and J. Harris, Principles of Algebraic Geometry, Wiley-Interscience, New York (1978) W-K. To and L. Weng, Curvature of the L2-metric on the direct image of a family of Hermitian-Einstein vector bundles, Amer. J. Math. 120 (1998) 649–661. R. Wells, Differential Analysis on Complex Manifolds, Prentice-Hall, Englewood Cliffs, N.J.,2nd ed. Springer-Verlag (1973). | |
dspace.entity.type | Publication |
Download
Original bundle
1 - 1 of 1