Symmetric submersions of R-n -> R-m
dc.contributor.author | Díaz-Cano Ocaña, Antonio | |
dc.contributor.author | Gonzalez Gascón, F. | |
dc.contributor.author | Peralta Salas, Daniel | |
dc.date.accessioned | 2023-06-20T09:33:02Z | |
dc.date.available | 2023-06-20T09:33:02Z | |
dc.date.issued | 2007 | |
dc.description.abstract | Submersions f such that f(-1)(0) contains a given fiber F, and that are invariant under a family of vector fields s leaving F invariant, are constructed. Examples for which a submersion of this kind cannot exist are also given. In the absence of a geometric theory of submersions f invariant under s, most of our treatment is analytic. | |
dc.description.department | Depto. de Álgebra, Geometría y Topología | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.faculty | Instituto de Matemática Interdisciplinar (IMI) | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/15013 | |
dc.identifier.doi | 10.1016/j.na.2006.08.049 | |
dc.identifier.issn | 0362-546X | |
dc.identifier.officialurl | http://www.sciencedirect.com/science/article/pii/S0362546X06005323 | |
dc.identifier.relatedurl | http://www.elsevier.com/locate/na | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/49877 | |
dc.issue.number | 8 | |
dc.journal.title | Nonlinear Analysis: Theory, Methods & Applications | |
dc.language.iso | eng | |
dc.page.final | 2432 | |
dc.page.initial | 2424 | |
dc.publisher | Elsevier | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 517.9 | |
dc.subject.keyword | Submersions | |
dc.subject.keyword | Symmetries | |
dc.subject.ucm | Ecuaciones diferenciales | |
dc.subject.unesco | 1202.07 Ecuaciones en Diferencias | |
dc.title | Symmetric submersions of R-n -> R-m | |
dc.type | journal article | |
dc.volume.number | 67 | |
dcterms.references | V.I. Arnold, Les M´ethodes Math´ematiques de la Mécanique Classique, Mir, 1976. V.I. Arnold, Geometrical Methods in the Theory of Ordinary Differential Equations, Springer-Verlag, 1983. V.I. Arnold, V.V. Kozlov, A.I. Ne˘ıshtadt, Dynamical Systems III, in: Encyclopaedia Math. Sci., vol. 3, Springer-Verlag, 1988. L. Bianchi, Lezioni Sulla Teoria dei Gruppi Continui Finiti di Trasformazioni, vol. VI, Bologna, Zanichelli, 1928. C. Chicone, P. Ehrlich, Gradient-like and integrable vector fields on R2, Manuscripta Math. 49 (1984) 141–164. A.F. Costa, F. Gonz´alez-Gasc´on, A. Gonz´alez-L´opez, On codimension one submersions of euclidean spaces, Invent. Math. 93 (1988) 545–555. M. Gromov, Partial Differential Relations, Springer-Verlag, 1986. W. Hahn, Stability of Motion, in: die Grundlehren der mathematischen Wissenschaften, Band 138, Springer-Verlag, 1967. G. Hector, W. Bouma, All open surfaces are leaves of simple foliations of R3, Nederl. Akad. Wetensch. Indag. Math. 45 (1983) 443–452. L. Markus, Parallel dynamical systems, Topology 8 (1969) 47–57. | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 134ad262-ecde-4097-bca7-ddaead91ce52 | |
relation.isAuthorOfPublication | a6d5c814-2809-4e3f-9994-64085621a568 | |
relation.isAuthorOfPublication.latestForDiscovery | 134ad262-ecde-4097-bca7-ddaead91ce52 |
Download
Original bundle
1 - 1 of 1