Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Symmetric submersions of R-n -> R-m

dc.contributor.authorDíaz-Cano Ocaña, Antonio
dc.contributor.authorGonzalez Gascón, F.
dc.contributor.authorPeralta Salas, Daniel
dc.date.accessioned2023-06-20T09:33:02Z
dc.date.available2023-06-20T09:33:02Z
dc.date.issued2007
dc.description.abstractSubmersions f such that f(-1)(0) contains a given fiber F, and that are invariant under a family of vector fields s leaving F invariant, are constructed. Examples for which a submersion of this kind cannot exist are also given. In the absence of a geometric theory of submersions f invariant under s, most of our treatment is analytic.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.facultyInstituto de Matemática Interdisciplinar (IMI)
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/15013
dc.identifier.doi10.1016/j.na.2006.08.049
dc.identifier.issn0362-546X
dc.identifier.officialurlhttp://www.sciencedirect.com/science/article/pii/S0362546X06005323
dc.identifier.relatedurlhttp://www.elsevier.com/locate/na
dc.identifier.urihttps://hdl.handle.net/20.500.14352/49877
dc.issue.number8
dc.journal.titleNonlinear Analysis: Theory, Methods & Applications
dc.language.isoeng
dc.page.final2432
dc.page.initial2424
dc.publisherElsevier
dc.rights.accessRightsrestricted access
dc.subject.cdu517.9
dc.subject.keywordSubmersions
dc.subject.keywordSymmetries
dc.subject.ucmEcuaciones diferenciales
dc.subject.unesco1202.07 Ecuaciones en Diferencias
dc.titleSymmetric submersions of R-n -> R-m
dc.typejournal article
dc.volume.number67
dcterms.referencesV.I. Arnold, Les M´ethodes Math´ematiques de la Mécanique Classique, Mir, 1976. V.I. Arnold, Geometrical Methods in the Theory of Ordinary Differential Equations, Springer-Verlag, 1983. V.I. Arnold, V.V. Kozlov, A.I. Ne˘ıshtadt, Dynamical Systems III, in: Encyclopaedia Math. Sci., vol. 3, Springer-Verlag, 1988. L. Bianchi, Lezioni Sulla Teoria dei Gruppi Continui Finiti di Trasformazioni, vol. VI, Bologna, Zanichelli, 1928. C. Chicone, P. Ehrlich, Gradient-like and integrable vector fields on R2, Manuscripta Math. 49 (1984) 141–164. A.F. Costa, F. Gonz´alez-Gasc´on, A. Gonz´alez-L´opez, On codimension one submersions of euclidean spaces, Invent. Math. 93 (1988) 545–555. M. Gromov, Partial Differential Relations, Springer-Verlag, 1986. W. Hahn, Stability of Motion, in: die Grundlehren der mathematischen Wissenschaften, Band 138, Springer-Verlag, 1967. G. Hector, W. Bouma, All open surfaces are leaves of simple foliations of R3, Nederl. Akad. Wetensch. Indag. Math. 45 (1983) 443–452. L. Markus, Parallel dynamical systems, Topology 8 (1969) 47–57.
dspace.entity.typePublication
relation.isAuthorOfPublication134ad262-ecde-4097-bca7-ddaead91ce52
relation.isAuthorOfPublicationa6d5c814-2809-4e3f-9994-64085621a568
relation.isAuthorOfPublication.latestForDiscovery134ad262-ecde-4097-bca7-ddaead91ce52

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
05.pdf
Size:
253.17 KB
Format:
Adobe Portable Document Format

Collections