Publication:
Symmetric submersions of R-n -> R-m

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2007
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
Submersions f such that f(-1)(0) contains a given fiber F, and that are invariant under a family of vector fields s leaving F invariant, are constructed. Examples for which a submersion of this kind cannot exist are also given. In the absence of a geometric theory of submersions f invariant under s, most of our treatment is analytic.
Description
Keywords
Citation
V.I. Arnold, Les M´ethodes Math´ematiques de la Mécanique Classique, Mir, 1976. V.I. Arnold, Geometrical Methods in the Theory of Ordinary Differential Equations, Springer-Verlag, 1983. V.I. Arnold, V.V. Kozlov, A.I. Ne˘ıshtadt, Dynamical Systems III, in: Encyclopaedia Math. Sci., vol. 3, Springer-Verlag, 1988. L. Bianchi, Lezioni Sulla Teoria dei Gruppi Continui Finiti di Trasformazioni, vol. VI, Bologna, Zanichelli, 1928. C. Chicone, P. Ehrlich, Gradient-like and integrable vector fields on R2, Manuscripta Math. 49 (1984) 141–164. A.F. Costa, F. Gonz´alez-Gasc´on, A. Gonz´alez-L´opez, On codimension one submersions of euclidean spaces, Invent. Math. 93 (1988) 545–555. M. Gromov, Partial Differential Relations, Springer-Verlag, 1986. W. Hahn, Stability of Motion, in: die Grundlehren der mathematischen Wissenschaften, Band 138, Springer-Verlag, 1967. G. Hector, W. Bouma, All open surfaces are leaves of simple foliations of R3, Nederl. Akad. Wetensch. Indag. Math. 45 (1983) 443–452. L. Markus, Parallel dynamical systems, Topology 8 (1969) 47–57.
Collections