Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Duality and Lorentz-Marcinkiewicz Operator-Spaces

Loading...
Thumbnail Image

Official URL

Full text at PDC

Publication date

1988

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Matematisk Institut, Universitetsparken NY Munkegade
Citations
Google Scholar

Citation

Abstract

Let S,q be the collection of all compact operators T on a (complex) Hilbert space H such that (INVALID INPUT),q(T) = (P1 n=1((n)sn(T))qn−1)1/q < 1. Here (sn(T)) are the singular numbers of T, 0 < q 1 and :(0,1) ! (0,1) is a continuous function with (1) = 1 and ¯(t):= sups>0((ts)/(s)) < 1 for every t > 0. The special case (t) = t1/p gives the operator space (Sp,q, p,q) introduced in 1967 by H. Triebel [Invent. Math. 4, 275-279 (1967; Zbl 0165.145)]. We characterize the dual of S,q. In particular, we prove that (Sp,q)0 = L(H) for 0 < p < 1 and 0 < q 1, or p = 1 and 0 < q < 1. This complements previous results of C. Merucci [C. R. Acad. Sci., Paris, S´er. A 274, 1163-1166 (1972; Zbl 0238.46037)] and C. Gapaillard and Pham the Lai [Stud. Mat. 49, 129-138 (1974; Zbl 0244.47013)] on duality of Sp,q-spaces.

Research Projects

Organizational Units

Journal Issue

Description

Unesco subjects

Keywords

Collections