Duality and Lorentz-Marcinkiewicz Operator-Spaces
dc.contributor.author | Cobos Díaz, Fernando | |
dc.date.accessioned | 2023-06-20T16:53:48Z | |
dc.date.available | 2023-06-20T16:53:48Z | |
dc.date.issued | 1988 | |
dc.description.abstract | Let S,q be the collection of all compact operators T on a (complex) Hilbert space H such that (INVALID INPUT),q(T) = (P1 n=1((n)sn(T))qn−1)1/q < 1. Here (sn(T)) are the singular numbers of T, 0 < q 1 and :(0,1) ! (0,1) is a continuous function with (1) = 1 and ¯(t):= sups>0((ts)/(s)) < 1 for every t > 0. The special case (t) = t1/p gives the operator space (Sp,q, p,q) introduced in 1967 by H. Triebel [Invent. Math. 4, 275-279 (1967; Zbl 0165.145)]. We characterize the dual of S,q. In particular, we prove that (Sp,q)0 = L(H) for 0 < p < 1 and 0 < q 1, or p = 1 and 0 < q < 1. This complements previous results of C. Merucci [C. R. Acad. Sci., Paris, S´er. A 274, 1163-1166 (1972; Zbl 0238.46037)] and C. Gapaillard and Pham the Lai [Stud. Mat. 49, 129-138 (1974; Zbl 0244.47013)] on duality of Sp,q-spaces. | en |
dc.description.department | Depto. de Análisis Matemático y Matemática Aplicada | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/15636 | |
dc.identifier.issn | 0025-5521 | |
dc.identifier.relatedurl | http://www.mscand.dk/ | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/57363 | |
dc.issue.number | 2 | |
dc.journal.title | Mathematica Scandinavica | |
dc.language.iso | eng | |
dc.page.final | 267 | |
dc.page.initial | 261 | |
dc.publisher | Matematisk Institut, Universitetsparken NY Munkegade | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 517.98 | |
dc.subject.keyword | Compact operators | |
dc.subject.keyword | Singular numbers | |
dc.subject.keyword | Dual | |
dc.subject.keyword | Interpolation spaces | |
dc.subject.keyword | Spaces of operators | |
dc.subject.ucm | Análisis funcional y teoría de operadores | |
dc.title | Duality and Lorentz-Marcinkiewicz Operator-Spaces | en |
dc.type | journal article | |
dc.volume.number | 63 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | ad35279f-f928-4b72-a5bd-e422662ac4c1 | |
relation.isAuthorOfPublication.latestForDiscovery | ad35279f-f928-4b72-a5bd-e422662ac4c1 |
Download
Original bundle
1 - 1 of 1