Publication:
Marginality and the position value

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2022-10-08
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Springer
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
We present a new characterization of the position value, one of the most prominent allocation rules for communication situations (graph-games or games with restricted communication). This characterization includes the PL-marginality property, an extension for communications situations of the classic marginality for TU-games, as well as component efficiency and balanced link contributions for necessary players.
Description
CRUE-CSIC (Acuerdos Transformativos 2022)
UCM subjects
Unesco subjects
Keywords
Citation
Algaba E, Bilbao J, Borm P, López JJ (2000) The position value for union stable systems. Math Methods Oper Res 52:221–236 Algaba E, Bilbao J, van den Brink R (2015) Harsanyi power solutions for games on union stable systems. Ann Oper Res 225:27–44 Béal S, Ferrières S, Remila E, Splal P (2016) Axiomatic characterizations under players nullification. Math Soc Sci 80:47–57 Borkotokey S, Chakrabarti S, Gilles RP, Gogoi L, Kumar R (2020) Probabilistic Network Values. QMS Research Paper 2020/08, Available at SSRN: https://ssrn.com/abstract=3692371 Borm P, Owen G, Tijs S (1992) On the position value for communication situations. SIAM J Discrete Math 5(3):305–322 van den Brink R, van der Laan G, Pruzhansky V (2011) Harsanyi power solution for graph restricted games. Int J Game Theory 40:87–110 van den Brink R, Gilles RP (1996) Axiomatizations of the conjunctive permission value for games with permission structures. Games Econ Behav 12:113–126 Casajus A (2007) The position value is the Myerson value, in a sense. Internat J Game Theory 36:47–55 Casajus A (2011) Differential marginality, van den Brink fairness and the Shapley value. Theor Decis 71:163–174 Casajus A (2011) Marginality, differential marginality and the Banzhaf value. Theor Decis 71:365–372 Casajus A, Yokote K (2017) Weak differential marginality and the Shapley value. J Econ Theory 176:274–284 Chun Y (1989) A new axiomatization of the Shapley value. Games Econ Behav 1:119–130 de Clippel G, Serrano R (2008) Marginal contributions and externalities in the value. Econometrica 76:1413–1436 Fernández JR, Gallego I, Jiménez-Losada A, Ordóñez M (2018) The cg-position value for games on fuzzy communication structures. Fuzzy Sets Syst 341:37–58 Ghintran A (2010) A weighted position value. Working Paper Series, 1008, Óbuda University, Keleti Faculty of Business and Management Ghintran A, González-Arangüena E, Manuel C (2012) A probabilistic position value. Ann Oper Res 201(1):183–196 Gómez D, González-Arangüena E, Manuel C, Owen G, del Pozo M, Tejada J (2003) Centrality and power in social networks: a game theoretic approach. Math Soc Sci 46:27–54 Gómez D, González-Arangüena E, Manuel C, Owen G, del Pozo M (2004) A unified approach to the Myerson value and the position value. Theor Decis 56:63–76 González-Arangüena E, Manuel C, Owen G, del Pozo M (2017) The within groups and the between groups Myerson values. Eur J Oper Res 257:586–600
Collections