Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Moduli Spaces of Framed G–Higgs Bundles and Symplectic Geometry

Loading...
Thumbnail Image

Full text at PDC

Publication date

2019

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Springer
Citations
Google Scholar

Citation

Abstract

Let X be a compact connected Riemann surface, D ⊂ X a reduced effective divisor, G a connected complex reductive affine algebraic group and Hx G a Zariski closed subgroup for every x ∈ D. A framed principal G–bundle on X is a pair (EG, φ), where EG is a holomorphic principal G–bundle on X and φ assigns to each x ∈ D a point of the quotient space (EG)x /Hx . A framed G–Higgs bundle is a framed principal G–bundle (EG, φ) together with a holomorphic section θ ∈ H0(X, ad(EG) ⊗ KX ⊗ OX (D)) such that θ (x) is compatible with the framing φ at x for every x ∈ D. We construct a holomorphic symplectic structure on the moduli space MF H (G) of stable framed G–Higgs bundles on X. Moreover, we prove that the natural morphism from MF H (G) to the moduli space MH (G) of D-twisted G–Higgs bundles (EG, θ) that forgets the framing, is Poisson. These results generalize (Biswas et al. in Int Math Res Not, 2019. https://doi.org/10.1093/imrn/rnz016,arXiv:1805.07265) where (G, {Hx }x∈D) is taken to be (GL(r, C), {Ir×r}x∈D). We also investigate the Hitchin system for the moduli space MF H (G) and its relationship with that for MH (G).

Research Projects

Organizational Units

Journal Issue

Description

Keywords

Collections