Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Chaos in a deformed Dicke model

Loading...
Thumbnail Image

Full text at PDC

Publication date

2022

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

IOP Publishing Ltd
Citations
Google Scholar

Citation

Abstract

The critical behavior in an important class of excited state quantum phase transitions is signaled by the presence of a new constant of motion only at one side of the critical energy. We study the impact of this phenomenon in the development of chaos in a modified version of the paradigmatic Dicke model of quantum optics, in which a perturbation is added that breaks the parity symmetry. Two asymmetric energy wells appear in the semiclassical limit of the model, whose consequences are studied both in the classical and in the quantum cases. Classically, Poincare sections reveal that the degree of chaos not only depends on the energy of the initial condition chosen, but also on the particular energy well structure of the model. In the quantum case, Peres lattices of physical observables show that the appearance of chaos critically depends on the quantum conserved number provided by this constant of motion. The conservation law defined by this constant is shown to allow for the coexistence between chaos and regularity at the same energy. We further analyze the onset of chaos in relation with an additional conserved quantity that the model can exhibit.

Research Projects

Organizational Units

Journal Issue

Description

© 2022 IOP Publishing Ltd. This work has been financially supported by the Spanish Grant No. PGC2018-094180-BI00 (MCIU/AEI/FEDER, EU), CAM/FEDER Project No. S2018/TCS-4342 (QUITEMADCM), and CSIC Research Platform on Quantum Technologies PTI-001. ALC acknowledges financial support from 'la Caixa' Foundation (ID 100010434) through the fellowship LCF/BQ/DR21/11880024.

UCM subjects

Unesco subjects

Keywords

Collections