Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Low-temperature quenching of one-dimensional localized Frenkel excitons

Loading...
Thumbnail Image

Full text at PDC

Publication date

2003

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier Science BV
Citations
Google Scholar

Citation

Abstract

We present a theoretical analysis of low-temperature quenching of one-dimensional Frenkel excitons that are localized by moderate on-site (diagonal) uncorrelated disorder. Exciton diffusion is considered as an incoherent hopping over localization segments and is probed by the exciton fluorescence quenching at point traps. The rate equation is used to calculate the temperature dependence of the exciton quenching. The activation temperature of the diffusion is found to be of the order of the width of the exciton absorption band. We demonstrate that the intra-segment scattering is extremely important for the exciton diffusion. We discuss also experimental data on the fast exciton-exciton annihilation in linear molecular aggregates at low temperatures.

Research Projects

Organizational Units

Journal Issue

Description

© Elsevier Science B.V. All rights reserved. This work was supported by the DGI-MCyT (Project MAT2000-0734). A. V. M. and F. D. A. acknowledge support from CAM (Project 07N/0075/2001). V. A. M. acknowledges support from MECyD (Project SAB2000-0103) as well as through a NATO Fellowship.

Unesco subjects

Keywords

Collections