Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Low-temperature quenching of one-dimensional localized Frenkel excitons

dc.contributor.authorMalyshev, Andrey
dc.contributor.authorDomínguez-Adame Acosta, Francisco
dc.date.accessioned2023-06-20T10:48:29Z
dc.date.available2023-06-20T10:48:29Z
dc.date.issued2003-04-07
dc.description© Elsevier Science B.V. All rights reserved. This work was supported by the DGI-MCyT (Project MAT2000-0734). A. V. M. and F. D. A. acknowledge support from CAM (Project 07N/0075/2001). V. A. M. acknowledges support from MECyD (Project SAB2000-0103) as well as through a NATO Fellowship.
dc.description.abstractWe present a theoretical analysis of low-temperature quenching of one-dimensional Frenkel excitons that are localized by moderate on-site (diagonal) uncorrelated disorder. Exciton diffusion is considered as an incoherent hopping over localization segments and is probed by the exciton fluorescence quenching at point traps. The rate equation is used to calculate the temperature dependence of the exciton quenching. The activation temperature of the diffusion is found to be of the order of the width of the exciton absorption band. We demonstrate that the intra-segment scattering is extremely important for the exciton diffusion. We discuss also experimental data on the fast exciton-exciton annihilation in linear molecular aggregates at low temperatures.
dc.description.departmentDepto. de Física de Materiales
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipDGI-MCyT
dc.description.sponsorshipCAM
dc.description.sponsorshipMECyD
dc.description.sponsorshipNATO
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/27497
dc.identifier.doi10.1016/S0009-2614(03)00206-9
dc.identifier.issn0009-2614
dc.identifier.officialurlhttp://dx.doi.org/10.1016/S0009-2614(03)00206-9
dc.identifier.relatedurlhttp://www.sciencedirect.com
dc.identifier.relatedurlhttp://arxiv.org/abs/cond-mat/0209083
dc.identifier.urihttps://hdl.handle.net/20.500.14352/51260
dc.issue.number3-4
dc.journal.titleChemical Physics Letters
dc.language.isoeng
dc.page.final425
dc.page.initial417
dc.publisherElsevier Science BV
dc.relation.projectIDMAT2000-0734
dc.relation.projectIDProject 07N/0075/2001
dc.relation.projectIDProject SAB2000-0103
dc.rights.accessRightsopen access
dc.subject.cdu538.9
dc.subject.keywordRadiative Lifetime
dc.subject.keywordSuperradiant Emission
dc.subject.keywordDependence
dc.subject.keywordDynamics
dc.subject.keywordAnnihilation
dc.subject.keywordLength
dc.subject.keywordStatistics
dc.subject.keywordBand
dc.subject.ucmFísica de materiales
dc.titleLow-temperature quenching of one-dimensional localized Frenkel excitons
dc.typejournal article
dc.volume.number371
dcterms.references[1] E. E. Jelley, Nature (London) 38, 1009 (1936). [2] G. Scheibe, Angew. Chem. 49, 563 (1936). [3] J. Frenkel, Phys. Rev. 17, 17 (1931). [4] A. S. Davydov, Theory of Molecular Excitons (Plenum, New York, 1971). [5] F. C. Spano and J. Knoester, in Advances in Magnetic and Optical Resonance, Vol. 18, ed. W. S. Warren (Academic, New York, 1994), p. 117. [6] Contributions to Adv. Mater. 7 (1995). [7] J-aggregates, ed. T. Kobayashi (World Scientific, Singapur, 1996). [8] S. de Boer and D. A. Wiersma, Chem. Phys. Lett. 165, 45 (1990). [9] H. Fidder, J. Knoester, and D. A. Wiersma, Chem. Phys. ] H. Fidder, J. Terpstra, and D. A. Wiersma, J. Chem. Phys. 94, 6895 (1991). [11] I. G. Scheblykin, O. Yu. Sliusarenko, L. S. Lepnev, A. G. Vitukhnovsky, and M. Van der Auweraer, J. Phys. Chem. B 104, 10949 (2000); 105, 4636 (2001). [12] J. A. Leegwater, J. R. Durrant, and D. R. Klug, J. Phys. Chem. B 101, 7205 (1997). [13] M. Shimizu, S. Suto, and T. Goto, J. Chem. Phys. 114, 2775 (2001). [14] M. Bednarz, V. A. Malyshev, J. P. Lemaistre, J. Knoester, J. Lumin. 94-95, 271 (2001). [15] M. Bednarz, V.A. Malyshev, and J. Knoester, J. Chem. Phys. 117, 6200 (2002). [16] V. A. Malyshev, Opt. Spektr. 71, 873 (1991) [Opt. Spectr. 71, 505 (1991)]; J. Lumin., 55, 225 (1993). [17] V. Malyshev and P. Moreno, Phys. Rev. B 51 14587 (1995). [18] M. Shimizu, S. Suto, T. Goto, A. Watanabe, and M. Matsuda, Phys. Rev. B 58, 5032 (1998). [19] V. A. Malyshev, A. Rodríguez, and F. Domínguez Adame, Phys. Rev. B 60, 14140 (1999a). [20] A. V. Malyshev and V. A. Malyshev, Phys. Rev. B 63, 195111 (2001). [21] A. V. Malyshev and V. A. Malyshev, J. Lumin. 94-95, 369 (2001). [22] K. Minoshima, M. Taiji, K. Misawa, T. Kobayashi, Chem. Phys. Lett. 218, 67 (1994). [23] J. Knoester and F. C. Spano, in Ref. 7, p. 111. [24] L. D. Bakalis and J. Knoester, J. Phys. Chem. B 103, 6620 (1999); J. Lumin. 87-89, 66 (2000). [25] V. F. Kamalov, I. A. Struganova, and K. Ioshihara, J. Phys. Chem. 100, 8640 (1996). [26] V. A. Malyshev, H. Glaeske, and K.-H. Feller Chem. Phys. Lett. 305, 117 (1999). [27] V. A. Malyshev, G. G. Kozlov, H. Glaeske, and K.-H. Feller. Chem. Phys. 254, 31 (2000). [28] I. V. Ryzhov, G. G. Kozlov, V. A. Malyshev, and J. Knoester, J. Chem. Phys. 114, 5322 (2001). [29] I. G. Scheblykin, M. M. Bataiev, M. Van der Auweraer, and A. G. Vitukhnovsky, Chem. Phys. Lett. 316, 37 (2000)
dspace.entity.typePublication
relation.isAuthorOfPublicationb2abe0ef-0417-4f43-8dce-55d3205e22ec
relation.isAuthorOfPublicationdbc02e39-958d-4885-acfb-131220e221ba
relation.isAuthorOfPublication.latestForDiscoveryb2abe0ef-0417-4f43-8dce-55d3205e22ec

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Dguez-Adame67preprint.pdf
Size:
171.16 KB
Format:
Adobe Portable Document Format

Collections