The heat flow in an optimal Fréchet space of unbounded initial data in Rd
dc.contributor.author | Rodríguez Bernal, Aníbal | |
dc.contributor.author | Robinson, James C. | |
dc.date.accessioned | 2023-11-13T17:16:58Z | |
dc.date.available | 2023-11-13T17:16:58Z | |
dc.date.issued | 2020-07-15 | |
dc.description.abstract | In this paper we show that solutions of the heat equation that are given in terms of the heat kernel define semigroups on the family of Fréchet spaces Lp0 (Rd ), the intersection (over all ε > 0) of the spaces Lpε (Rd ) of functions such that ∫ Rd e−ε|x|2 |f (x)|p dx < ∞. These spaces consist of functions that are ‘large at infinity’, and L10 (Rd ) is the maximal space in which one can use the heat kernel to obtain globally-defined solutions of the heat equation. We prove suitable estimates from Lp0 (Rd ) into Lq0 (Rd ), q ≥ p, for these semigroups. We then consider the heat semigroup posed in spaces that are dual to these spaces of functions, namely the spaces Lp−ε (Rd ) of very-rapidly decreasing functions such that ∫ Rd eε|x|2 |f (x)|p dx < ∞. We show that (Lppε (Rd ))' = Lq−qε (Rd ) (with 1 <p< ∞ and (p, q) conjugate), and that the heat flow on Lpε (Rd ) is the adjoint of the flow on Lq−δ (Rd ) for an appropriate (time-dependent) choice of δ. | en |
dc.description.department | Depto. de Análisis Matemático y Matemática Aplicada | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.faculty | Instituto de Ciencias Matemáticas (ICMAT) | |
dc.description.refereed | FALSE | |
dc.description.sponsorship | Ministerio de Ciencia, Innovación y Universidades (España) | |
dc.description.sponsorship | Ministerio de Educación, Formación Profesional y Deportes (España) | |
dc.description.sponsorship | Universidad Complutense de Madrid | |
dc.description.sponsorship | Engineering and Physical Sciences Research Council (Reino Unido) | |
dc.description.sponsorship | Ministerio de Economía, Comercio y Empresa (España) | |
dc.description.status | pub | |
dc.identifier.citation | Robinson, J. C., & Rodríguez-Bernal, A. (2020). The heat flow in an optimal Fréchet space of unbounded initial data in Rd. Journal Of Differential Equations, 269(11), 10277-10321. https://doi.org/10.1016/j.jde.2020.07.017 | |
dc.identifier.doi | 10.1016/j.jde.2020.07.017 | |
dc.identifier.officialurl | https//doi.org/10.1016/j.jde.2020.07.017 | |
dc.identifier.relatedurl | https://www.sciencedirect.com/science/article/pii/S0022039620304113 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/88699 | |
dc.journal.title | Journal of Differential Equations | |
dc.language.iso | eng | |
dc.page.final | 10321 | |
dc.page.initial | 10277 | |
dc.publisher | Elsevier | |
dc.relation.projectID | info:eu-repo/grantAgreement/UCM/Ecuaciones en derivadas parciales: dinámica asintótica y perturbaciones/MTM2016-75465-P | |
dc.relation.projectID | info:eu-repo/grantAgreement/UCM/Aspectos lineales y no lineales en ecuaciones en derivadas parciales. Dinámica asintótica y perturbaciones/PID2019-103860GB-I00 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MCIN//PRX17/00522 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//SEV-2015-0554/ES/INSTITUTO DE CIENCIAS MATEMATICAS/ | |
dc.relation.projectID | EP/R023778/1 | |
dc.relation.projectID | GR58/08 | |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International | en |
dc.rights.accessRights | open access | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject.ucm | Ciencias | |
dc.subject.unesco | 12 Matemáticas | |
dc.title | The heat flow in an optimal Fréchet space of unbounded initial data in Rd | en |
dc.type | journal article | |
dc.type.hasVersion | AM | |
dc.volume.number | 269 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | fb7ac82c-5148-4dd1-b893-d8f8612a1b08 | |
relation.isAuthorOfPublication | fb7ac82c-5148-4dd1-b893-d8f8612a1b08 | |
relation.isAuthorOfPublication | fb7ac82c-5148-4dd1-b893-d8f8612a1b08 | |
relation.isAuthorOfPublication | fb7ac82c-5148-4dd1-b893-d8f8612a1b08 | |
relation.isAuthorOfPublication.latestForDiscovery | fb7ac82c-5148-4dd1-b893-d8f8612a1b08 |
Download
Original bundle
1 - 1 of 1
Loading...
- Name:
- rodriguezbernal_theheat.pdf
- Size:
- 497.99 KB
- Format:
- Adobe Portable Document Format