Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

The heat flow in an optimal Fréchet space of unbounded initial data in Rd

dc.contributor.authorRodríguez Bernal, Aníbal
dc.contributor.authorRobinson, James C.
dc.date.accessioned2023-11-13T17:16:58Z
dc.date.available2023-11-13T17:16:58Z
dc.date.issued2020-07-15
dc.description.abstractIn this paper we show that solutions of the heat equation that are given in terms of the heat kernel define semigroups on the family of Fréchet spaces Lp0 (Rd ), the intersection (over all ε > 0) of the spaces Lpε (Rd ) of functions such that ∫ Rd e−ε|x|2 |f (x)|p dx < ∞. These spaces consist of functions that are ‘large at infinity’, and L10 (Rd ) is the maximal space in which one can use the heat kernel to obtain globally-defined solutions of the heat equation. We prove suitable estimates from Lp0 (Rd ) into Lq0 (Rd ), q ≥ p, for these semigroups. We then consider the heat semigroup posed in spaces that are dual to these spaces of functions, namely the spaces Lp−ε (Rd ) of very-rapidly decreasing functions such that ∫ Rd eε|x|2 |f (x)|p dx < ∞. We show that (Lppε (Rd ))' = Lq−qε (Rd ) (with 1 <p< ∞ and (p, q) conjugate), and that the heat flow on Lpε (Rd ) is the adjoint of the flow on Lq−δ (Rd ) for an appropriate (time-dependent) choice of δ.en
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.facultyInstituto de Ciencias Matemáticas (ICMAT)
dc.description.refereedFALSE
dc.description.sponsorshipMinisterio de Ciencia, Innovación y Universidades (España)
dc.description.sponsorshipMinisterio de Educación, Formación Profesional y Deportes (España)
dc.description.sponsorshipUniversidad Complutense de Madrid
dc.description.sponsorshipEngineering and Physical Sciences Research Council (Reino Unido)
dc.description.sponsorshipMinisterio de Economía, Comercio y Empresa (España)
dc.description.statuspub
dc.identifier.citationRobinson, J. C., & Rodríguez-Bernal, A. (2020). The heat flow in an optimal Fréchet space of unbounded initial data in Rd. Journal Of Differential Equations, 269(11), 10277-10321. https://doi.org/10.1016/j.jde.2020.07.017
dc.identifier.doi10.1016/j.jde.2020.07.017
dc.identifier.officialurlhttps//doi.org/10.1016/j.jde.2020.07.017
dc.identifier.relatedurlhttps://www.sciencedirect.com/science/article/pii/S0022039620304113
dc.identifier.urihttps://hdl.handle.net/20.500.14352/88699
dc.journal.titleJournal of Differential Equations
dc.language.isoeng
dc.page.final10321
dc.page.initial10277
dc.publisherElsevier
dc.relation.projectIDinfo:eu-repo/grantAgreement/UCM/Ecuaciones en derivadas parciales: dinámica asintótica y perturbaciones/MTM2016-75465-P
dc.relation.projectIDinfo:eu-repo/grantAgreement/UCM/Aspectos lineales y no lineales en ecuaciones en derivadas parciales. Dinámica asintótica y perturbaciones/PID2019-103860GB-I00
dc.relation.projectIDinfo:eu-repo/grantAgreement/MCIN//PRX17/00522
dc.relation.projectIDinfo:eu-repo/grantAgreement/MINECO//SEV-2015-0554/ES/INSTITUTO DE CIENCIAS MATEMATICAS/
dc.relation.projectIDEP/R023778/1
dc.relation.projectIDGR58/08
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ucmCiencias
dc.subject.unesco12 Matemáticas
dc.titleThe heat flow in an optimal Fréchet space of unbounded initial data in Rden
dc.typejournal article
dc.type.hasVersionAM
dc.volume.number269
dspace.entity.typePublication
relation.isAuthorOfPublicationfb7ac82c-5148-4dd1-b893-d8f8612a1b08
relation.isAuthorOfPublicationfb7ac82c-5148-4dd1-b893-d8f8612a1b08
relation.isAuthorOfPublicationfb7ac82c-5148-4dd1-b893-d8f8612a1b08
relation.isAuthorOfPublicationfb7ac82c-5148-4dd1-b893-d8f8612a1b08
relation.isAuthorOfPublication.latestForDiscoveryfb7ac82c-5148-4dd1-b893-d8f8612a1b08

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
rodriguezbernal_theheat.pdf
Size:
497.99 KB
Format:
Adobe Portable Document Format

Collections