Pion production in nonequilibrium chiral perturbation theory
dc.contributor.author | Gómez Nicola, Ángel | |
dc.date.accessioned | 2023-06-20T20:06:40Z | |
dc.date.available | 2023-06-20T20:06:40Z | |
dc.date.issued | 2001-07-01 | |
dc.description | © 2001 The American Physical Society. The author wishes to thank A.L. Maroto for useful comments and discussions. Financial support from CICYT, Spain, projects AEN97-1693 and FPA2000-0956 is acknowledged. | |
dc.description.abstract | We apply the formalism of chiral perturbation theory out of thermal equilibrium to describe explosive production of pions via the parametric resonance mechanism. To lowest order the Lagrangian is that of the nonlinear sigma model where the pion decay constant becomes a time-dependent function. This model allows for a consistent nonequilibrium formulation within the framework of the closed time path method, where one-loop effects can be systematically accounted for and renormalized. We work in the narrow resonance regime where there is only one resonant band. The pion distribution function is peaked around the resonant band where the number of pions grow exponentially in time. The present approach is limited to remain below the back-reaction time, although it accounts for nearly all the pion production during the typical plasma lifetime. Our results agree with the analysis performed in the O(4) model. The space and time components. f(pi)(s,t)(t) are also analyzed. To one loop f(pi)(s)not equalf(pi)(t) unlike the equilibrium case and their final central values are lower than the initial ones. This effect can be interpreted in terms of a reheating of the plasma. | |
dc.description.department | Depto. de Física Teórica | |
dc.description.faculty | Fac. de Ciencias Físicas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | CICYT | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/30585 | |
dc.identifier.doi | 10.1103/PhysRevD.64.016011 | |
dc.identifier.issn | 0556-2821 | |
dc.identifier.officialurl | http://dx.doi.org/10.1103/PhysRevD.64.016011 | |
dc.identifier.relatedurl | http://journals.aps.org | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/59578 | |
dc.issue.number | 1 | |
dc.journal.title | Physical review D | |
dc.language.iso | eng | |
dc.publisher | Amer Physical Soc | |
dc.relation.projectID | AEN97-1693 | |
dc.relation.projectID | FPA2000-0956 | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 51-73 | |
dc.subject.keyword | Heavy-ion collisions | |
dc.subject.keyword | Finite-temperature | |
dc.subject.keyword | Phase-transition | |
dc.subject.keyword | High-energy | |
dc.subject.keyword | Particle-production | |
dc.subject.keyword | Expanding universe | |
dc.subject.keyword | Larger domains | |
dc.subject.keyword | Field-theory | |
dc.subject.keyword | Condensate | |
dc.subject.keyword | Dynamics | |
dc.subject.ucm | Física-Modelos matemáticos | |
dc.subject.ucm | Física matemática | |
dc.title | Pion production in nonequilibrium chiral perturbation theory | |
dc.type | journal article | |
dc.volume.number | 64 | |
dcterms.references | [1] D. Zschiesche et al., nucl-th/0101047 and references therein. [2] Proceedings of Quark Matter 2001 (Elsevier, Amsterdam, in press) and references therein. Conference site: http:// www.rhic.bnl.gov/qm2001/. [3] J. D. Bjorken, Phys. Rev. D 27, 140 (1983); J. Cleymans, R. V. Gavai, and E. Suhonen, Phys. Rep. 130, 217 (1986). [4] M. Le Bellac, Thermal Field Theory (Cambridge University Press, Cambridge, England, 1996). [5] A. Anselm, Phys. Lett. B 217, 169 (1989); A. Anselm and M. Ryskin, ibid. 226, 482 (1991); J. D. Bjorken, Int. J. Mod. Phys. A 7, 4189 (1992); J. P. Blaizot and A. Krzywicki, Phys. Rev. D 46, 246 (1992). [6] K. Rajagopal and F. Wilczek, Nucl. Phys. B404, 577 (1993); S. Gavin, A. Gocksch, and R. D. Pisarski, Phys. Rev. Lett. 72, 2143 (1994). [7] L. T. Baradzei et al., Nucl. Phys. B370, 365 (1992). [8] T. C. Brooks et al., Phys. Rev. D 61, 032003 (2000). [9] H. Hiro-Oka and H. Minakata, Phys. Lett. B 425, 129 (1998); 434, 461 (1998); Phys. Rev. C 61, 044903 (2000). [10] M. Bleicher, J. Randrup, R. Snellings, and X.-N. Wang, Phys. Rev. C 62, 041901 (2000). [11] F. Cooper, Phys. Rep. 315, 59 (1999). [12] D. Boyanowsky, H. J. de Vega, R. Holman, and S. Prem Kumar, Phys. Rev. D 56, 5233 (1997). [13] S. Prem Kumar, D. Boyanowsky, H. J. de Vega, and R. Holman, Phys. Rev. D 61, 065002 (2000). [14] S. Gavin and B. Müller, Phys. Lett. B 329, 486 (1994); S. Mrowczynski and B. Müller, ibid. 363, 1 (1995). [15] S. Weinberg, Physica A 96, 327 (1979). [16] J. Gasser and H. Leutwyler, Ann. Phys. (N.Y.) 158, 142 (1984); Nucl. Phys. B250, 465 (1985). [17] J. F. Donoghue, E. Golowich, and B. R. Holstein, Dynamics of the Standard Model (Cambridge University Press, Cambridge, England, 1992). [18] A. Dobado, A. Gómez Nicola, A. López-Maroto, and J. R. Peláez, Effective Lagrangians for the Standard Model (Springer, New York, 1997). [19] J. Gasser and H. Leutwyler, Phys. Lett. B 184, 83 (1987). [20] P. Gerber and H. Leutwyler, Nucl. Phys. B321, 387 (19899. [21] A. Bochkarev and J. Kapusta, Phys. Rev. D 54, 4066 (1996). [22] D. Boyanowsky, H. J. de Vega, and R. Holman, Phys. Rev. D 51, 734 (1995). [23] F. Cooper, Y. Kluger, E. Mottola, and J. P. Paz, Phys. Rev. D 51, 2377 819959; F. Cooper, Y. Kluger, and E. Mottola, Phys. Rev. C 54, 3298 81996). [24] J. H. Traschen and R. H. Branderberger, Phys. Rev. D 42, 2491 (1990); L. Kofman, A. Linde, and A. Starobinsky, Phys. Rev. Lett. 73, 3195 (1994); Phys. Rev. D 56, 3258 (1997). [25] J. Randrup, Phys. Rev. C 62, 064905 (2000). [26] D. Kaiser, Phys. Rev. D 56, 706 (1997); 59, 117901 (1999). [27] D. Boyanowsky, H. J. de Vega, R. Holman, and J. F. J. Salgado, Phys. Rev. D 54, 7570 (1996). [28] A. Gómez Nicola and V. Galán-González, Phys. Lett. B 449, 288 (1999). [29] D. T. Son, Phys. Rev. Lett. 84, 3771 (2000). [30] N. D. Birell and P. C. W. Davies, Quantum Fields in Curved Space (Cambridge University Press, Cambridge, England, 1982), and references therein. [31] J. Schwinger, J. Math. Phys. 2, 407 (1961); P. M. Bakshi and T. Mahanthappa, ibid. 4, 1 (1963); 4, 12 (1963); L. V. Keldysh, Zh. Eksp. Teor. Fiz. 47, 1515 (1964) [Sov. Phys. JETP 20, 1018 (19659]. [32] D. Boyanowsky, D. S. Lee, and A. Singh, Phys. Rev. D 48, 800 (1993). [33] G. Semenoff and N. Weiss, Phys. Rev. D 31, 689 (19859. [34] J. F. Donoghue and H. Leutwyler, Z. Phys. C 52, 343 (1991). [35] S. Weinberg, Gravitation and Cosmology (Wiley, New York, 1972). [36] B. Lehmann-Dronke et al., Phys. Rev. D 63, 114001 (2001). [37] D. Boyanowsky, H. J. de Vega, R. Holman, D.-S. Lee, and A. Singh, Phys. Rev. D 51, 4419 (1995). [38] Particle Data Group, D. E. Groom et al., Eur. Phys. J. C 15, 1 (2000), available on the PDG WWW pages (URL: http:// pdg.lbl.gov/). [39] J. A. Oller, E. Oset, and J. R. Peláez, Phys. Rev. D 59, 07400 (1999). [40] J. Baacke, K. Heitmann, and C. Patzold, Phys. Rev. D 57, 6398 (19989. [41] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products (Academic, New York, 1981). [42] J. I. Kapusta and E. V. Shuryak, Phys. Rev. D 49, 4694 (1994). [43] R. D. Pisarski and M. Tytgat, Phys. Rev. D 54, 2989 (1996). [44] D. Toublan, Phys. Rev. D 56, 5629 81997). [45] J. M. Martínez Resco and M. A. Valle Basagoiti, Phys. Rev. D 58, 097901 (1998). [46] J. L. Goity and H. Leutwyler, Phys. Lett. B 228, 517 (1989). [47] A. V. Smilga, Phys. Rep. 291, 1 (1997). [48] D. H. Rischke, Proceedings of Quark Matter 2001 (Elsevier, Amsterdam, in press) and references therein, nucl-th/0104071. [49] C. G. Callan, S. Coleman, and R. Jackiw, Ann. Phys. (N.Y.) 59, 42 (1970). [50] N. P. Landsman and Ch. G. van Weert, Phys. Rep. 145, 141 (1987) and references therein. [51] N. W. Mac Lachlan, Theory and Application of Mathieu Functions (Dover, New York, 1961). [52] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1970). | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 574aa06c-6665-4e9a-b925-fa7675e8c592 | |
relation.isAuthorOfPublication.latestForDiscovery | 574aa06c-6665-4e9a-b925-fa7675e8c592 |
Download
Original bundle
1 - 1 of 1