Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Auto-association measures for stationary time series of categorical data.

Loading...
Thumbnail Image

Full text at PDC

Publication date

2014

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Springer
Citations
Google Scholar

Citation

Abstract

For stationary time series of nominal categorical data or ordinal categorical data (with arbitrary ordered numberings of the categories), autocorrelation does not make much sense. Biswas and Guha (J Stat Plan Infer 139:3076–3087, 2009a) used mutual information as a measure of association and introduced the concept of auto-mutual information in this context. In this present paper, we introduce general auto-association measures for this purpose and study several special cases. Theoretical properties and simulation results are given along with two illustrative real data examples.

Research Projects

Organizational Units

Journal Issue

Description

Unesco subjects

Keywords

Collections