Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Auto-association measures for stationary time series of categorical data.

dc.contributor.authorBiswas, Atanu
dc.contributor.authorPardo Llorente, María del Carmen
dc.date.accessioned2023-06-19T15:01:46Z
dc.date.available2023-06-19T15:01:46Z
dc.date.issued2014
dc.description.abstractFor stationary time series of nominal categorical data or ordinal categorical data (with arbitrary ordered numberings of the categories), autocorrelation does not make much sense. Biswas and Guha (J Stat Plan Infer 139:3076–3087, 2009a) used mutual information as a measure of association and introduced the concept of auto-mutual information in this context. In this present paper, we introduce general auto-association measures for this purpose and study several special cases. Theoretical properties and simulation results are given along with two illustrative real data examples.
dc.description.departmentDepto. de Estadística e Investigación Operativa
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/37278
dc.identifier.doi10.1007/s11749-014-0364-8
dc.identifier.issn1133-0686
dc.identifier.officialurlhttp://link.springer.com/article/10.1007%2Fs11749-014-0364-8
dc.identifier.relatedurlhttp://link.springer.com
dc.identifier.urihttps://hdl.handle.net/20.500.14352/35160
dc.issue.number3
dc.journal.titleTest
dc.language.isoeng
dc.page.final514
dc.page.initial487
dc.publisherSpringer
dc.rights.accessRightsrestricted access
dc.subject.cdu519.22
dc.subject.keywordPower divergence
dc.subject.keywordHavrda–Charvat entropy
dc.subject.keywordARMA Categorical data analysis
dc.subject.keywordAuto-association
dc.subject.ucmEstadística matemática (Matemáticas)
dc.subject.unesco1209 Estadística
dc.titleAuto-association measures for stationary time series of categorical data.
dc.typejournal article
dc.volume.number23
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
PardoCarmen26.pdf
Size:
323.64 KB
Format:
Adobe Portable Document Format

Collections