Para depositar en Docta Complutense, identifícate con tu correo @ucm.es en el SSO institucional: Haz clic en el desplegable de INICIO DE SESIÓN situado en la parte superior derecha de la pantalla. Introduce tu correo electrónico y tu contraseña de la UCM y haz clic en el botón MI CUENTA UCM, no autenticación con contraseña.
 

Realization of all Dold’s congruences with stability

dc.contributor.authorRomero Ruiz del Portal, Francisco
dc.contributor.authorSalazar, J. M.
dc.date.accessioned2023-06-20T00:07:14Z
dc.date.available2023-06-20T00:07:14Z
dc.date.issued2010
dc.description.abstractThe main goal of this paper is to prove that for each n > 2, every sequence of integers satisfying Dold’s congruences is realized as the sequence of fixed point indices of the iterates of an orientation preserving Rn-homeomorphism at an isolated stable fixed point. We use Conley index techniques even though stable fixed points are not isolated invariant sets.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipMICINN
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/13990
dc.identifier.doi10.1016/j.jde.2010.03.006
dc.identifier.issn0022-0396
dc.identifier.officialurlhttp://www.sciencedirect.com/science/journal/00220396
dc.identifier.urihttps://hdl.handle.net/20.500.14352/42016
dc.issue.number4
dc.journal.titleJournal of Differential Equations
dc.language.isoeng
dc.page.final1013
dc.page.initial989
dc.publisherElsevier
dc.relation.projectIDMTM 2009-07030
dc.rights.accessRightsopen access
dc.subject.cdu515.1
dc.subject.keywordConley index
dc.subject.keywordFixed point index
dc.subject.keywordStable fixed points
dc.subject.keywordHomeomorphisms
dc.subject.ucmTopología
dc.subject.unesco1210 Topología
dc.titleRealization of all Dold’s congruences with stability
dc.typejournal article
dc.volume.number249
dcterms.references[1] I.K. Babenko, S.A. Bogatyi, The behavior if the index of periodic points under iterations of a mapping, Math. USSR Izvestiya, 38 (1992) 1-26. [2] C.Bonatti, J. Villadelprat, The index of stable critical points. Topology Appl. 126 (2002), 1-2, 263-271. [3] N.A. Bobylek, M.A.Krasnosels’kii, Deformation of a system into an asymptotically stable system, Automat remote control, 35 (1974) 1041-1044. [4] R.F. Brown, The Lefschetz fixed point theorem, Scott Foreman Co. Glenview Illinois, London (1971). [5] P.Le Calvez, J.C.Yoccoz, Un théoréme d’indice pour les homéomorphismes du plan au voisinage d’un poin fixe, Annals of Math. 146 (1997) 241-293. [6] P. Le Calvez, J.C. Yoccoz, Suite des indices de Lefschetz des itérés pour un domaine de Jordan qui est un bloc isolant, Unpublished. [7] P. Le Calvez, Dynamique des homéomorphismes du plan au voisinage d’un point fixe. Ann. Sci. Ecole Norm. Sup. (4) 36 (2003), no. 1, 139-171. [8] P. Le Calvez, F.R. Ruiz del Portal, J.M. Salazar, Fixed point indices of the iterates of R3-homeomorphisms at fixed points which are isolated invariant sets, J. London Math. Soc. (to appear). [9] S.N. Chow, J. Mallet-Paret, J.A. Yorke, A periodic orbit index which is a bifurcation invariant, Geometric Dynamics (Rio de Janeiro, 1981). Springer Lect. Notes in Mathematics, 1007. Berlin 1983, 109-131. [10] C. Christenson, W. Voxman, Aspects of topology, Marcel Dekker, Inc., New York and Basel, 1977. [11] E.N. Dancer, R. Ortega, The index or Lyapunov stable fixed points, Journal Dynamics and Diff. Equations, 6 (1994) 631-637. [12] A. Dold, Fixed point indices of iterated maps, Invent. Math., 74, (1983), 419-435. [13] E.Erle, Stable equilibria and vector field index, Topology Appl. 49 (1993) 231-235. [14] J.Franks, D.Richeson, Shift equivalence and the Conley index, Trans.Amer. Math. Soc. 352, 7 (2000) 3305-3322. [15] G.Graff, P.Nowak-Przygodzki, Fixed point indices of iterations of C1-maps in R3, Discrete and Continuous Dynamical Systems (to appear). [16] J. Jezierski, W. Marzantowicz, Homotopy Methods in Topological Fixed and Periodic Points Theory, Springer, 2005. [17] M.A.Krasnosel’skii, P.P.Zabreiko, Geometrical Methods of Nonlinear Analysis, Springer-Verlag, Berlin (1984). [18] R.D. Nussbaum, The fixed point index and some applications, Séminaire de Mathématiques supérieures, Les Presses de L’Université de Montréal, 1985. [19] F.R. Ruiz del Portal, Planar isolated and stable fixed points have index =1, Journal of Diff. Equations, 199 (2004), 179-188. [20] F.R. Ruiz del Portal, J.M. Salazar, Fixed point index of iterations of local homeomorphisms of the plane: a Conley-index approach, Topology 41 (2002) 1199-1212. [21] F.R. Ruiz del Portal, J.M. Salazar, A Poincaré formula for the fixed point indices of the iterations of arbitrary planar homeomorphisms, Fixed Point Theory Appl. (to appear). [22] F.R. Ruiz del Portal, J.M. Salazar, Indices of the iterates of R3-homeomorphisms at Lyapunov stable fixed points, Journal of Diff. Equations, 244 (2008) 1141-1156.
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2010realization.pdf
Size:
613.62 KB
Format:
Adobe Portable Document Format

Collections