Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Study of the Initial Value Problems Appearing in a Factorization Method of Second Order Elliptic Boundary Value Problems

Loading...
Thumbnail Image

Full text at PDC

Publication date

2008

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier
Citations
Google Scholar

Citation

Abstract

In [J. Henry, A.M. Ramos, Factorization of second order elliptic boundary value problems by dynamic programming, Nonlinear Analysis. Theory, Methods & Applications 59 (2004) 629–647] we presented a method for factorizing a second-order boundary value problem into a system of uncoupled first-order initial value problems, together with a nonlinear Riccati type equation for functional operators. A weak sense was given to that system but we did not perform a direct study of those equations. This factorization utilizes either the Neumann to Dirichlet (NtD) operator or the Dirichlet to Neumann (DtN) operator, which satisfy a Riccati equation. Here we consider the framework of Hilbert–Schmidt operators, which provides tools for a direct study of this Riccati type equation. Once we have solved the system of Cauchy problems, we show that its solution solves the original second-order boundary value problem. Finally, we indicate how this techniques can be used to find suitable transparent conditions.

Research Projects

Organizational Units

Journal Issue

Description

Keywords

Collections