Study of the Initial Value Problems Appearing in a Factorization Method of Second Order Elliptic Boundary Value Problems
| dc.contributor.author | Ramos Del Olmo, Ángel Manuel | |
| dc.contributor.author | Henry, J. | |
| dc.date.accessioned | 2023-06-20T09:27:54Z | |
| dc.date.available | 2023-06-20T09:27:54Z | |
| dc.date.issued | 2008-05-15 | |
| dc.description.abstract | In [J. Henry, A.M. Ramos, Factorization of second order elliptic boundary value problems by dynamic programming, Nonlinear Analysis. Theory, Methods & Applications 59 (2004) 629–647] we presented a method for factorizing a second-order boundary value problem into a system of uncoupled first-order initial value problems, together with a nonlinear Riccati type equation for functional operators. A weak sense was given to that system but we did not perform a direct study of those equations. This factorization utilizes either the Neumann to Dirichlet (NtD) operator or the Dirichlet to Neumann (DtN) operator, which satisfy a Riccati equation. Here we consider the framework of Hilbert–Schmidt operators, which provides tools for a direct study of this Riccati type equation. Once we have solved the system of Cauchy problems, we show that its solution solves the original second-order boundary value problem. Finally, we indicate how this techniques can be used to find suitable transparent conditions. | |
| dc.description.department | Depto. de Análisis Matemático y Matemática Aplicada | |
| dc.description.faculty | Fac. de Ciencias Matemáticas | |
| dc.description.refereed | TRUE | |
| dc.description.sponsorship | Plan Nacional de I+D+I del MCYT | |
| dc.description.sponsorship | Consejería de Educación de la Comunidad de Madrid | |
| dc.description.sponsorship | Universidad Complutense de Madrid | |
| dc.description.status | pub | |
| dc.eprint.id | https://eprints.ucm.es/id/eprint/12426 | |
| dc.identifier.doi | 10.1016/j.na.2007.02.040 | |
| dc.identifier.issn | 0362-546X | |
| dc.identifier.officialurl | http://www.sciencedirect.com/science/journal/0362546X | |
| dc.identifier.uri | https://hdl.handle.net/20.500.14352/49622 | |
| dc.issue.number | 10 | |
| dc.journal.title | Nonlinear Analysis: Theory, Methods & Applications | |
| dc.language.iso | eng | |
| dc.page.final | 3008 | |
| dc.page.initial | 2984 | |
| dc.publisher | Elsevier | |
| dc.relation.projectID | AGL2003-06862-C02-02 | |
| dc.relation.projectID | AGL2006-12112-C03-02/ALI | |
| dc.relation.projectID | CCG06-UCM/ESP-1110 | |
| dc.rights.accessRights | open access | |
| dc.subject.cdu | 517.986.6 | |
| dc.subject.cdu | 517.518.45 | |
| dc.subject.keyword | Factorization | |
| dc.subject.keyword | Boundary value problem | |
| dc.subject.keyword | Hilbert–Schmidt operator | |
| dc.subject.keyword | Riccati equation | |
| dc.subject.keyword | Invariant embedding | |
| dc.subject.keyword | Neumann to Dirichlet (NtD) operator | |
| dc.subject.keyword | Dirichlet to Neumann (DtN) operator | |
| dc.subject.keyword | Transparent conditions | |
| dc.subject.ucm | Análisis matemático | |
| dc.subject.unesco | 1202 Análisis y Análisis Funcional | |
| dc.title | Study of the Initial Value Problems Appearing in a Factorization Method of Second Order Elliptic Boundary Value Problems | |
| dc.type | journal article | |
| dc.volume.number | 68 | |
| dspace.entity.type | Publication | |
| relation.isAuthorOfPublication | 581c3cdf-f1ce-41e0-ac1e-c32b110407b1 | |
| relation.isAuthorOfPublication.latestForDiscovery | 581c3cdf-f1ce-41e0-ac1e-c32b110407b1 |
Download
Original bundle
1 - 1 of 1


