Study of the Initial Value Problems Appearing in a Factorization Method of Second Order Elliptic Boundary Value Problems

dc.contributor.authorRamos Del Olmo, Ángel Manuel
dc.contributor.authorHenry, J.
dc.date.accessioned2023-06-20T09:27:54Z
dc.date.available2023-06-20T09:27:54Z
dc.date.issued2008-05-15
dc.description.abstractIn [J. Henry, A.M. Ramos, Factorization of second order elliptic boundary value problems by dynamic programming, Nonlinear Analysis. Theory, Methods & Applications 59 (2004) 629–647] we presented a method for factorizing a second-order boundary value problem into a system of uncoupled first-order initial value problems, together with a nonlinear Riccati type equation for functional operators. A weak sense was given to that system but we did not perform a direct study of those equations. This factorization utilizes either the Neumann to Dirichlet (NtD) operator or the Dirichlet to Neumann (DtN) operator, which satisfy a Riccati equation. Here we consider the framework of Hilbert–Schmidt operators, which provides tools for a direct study of this Riccati type equation. Once we have solved the system of Cauchy problems, we show that its solution solves the original second-order boundary value problem. Finally, we indicate how this techniques can be used to find suitable transparent conditions.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipPlan Nacional de I+D+I del MCYT
dc.description.sponsorshipConsejería de Educación de la Comunidad de Madrid
dc.description.sponsorshipUniversidad Complutense de Madrid
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/12426
dc.identifier.doi10.1016/j.na.2007.02.040
dc.identifier.issn0362-546X
dc.identifier.officialurlhttp://www.sciencedirect.com/science/journal/0362546X
dc.identifier.urihttps://hdl.handle.net/20.500.14352/49622
dc.issue.number10
dc.journal.titleNonlinear Analysis: Theory, Methods & Applications
dc.language.isoeng
dc.page.final3008
dc.page.initial2984
dc.publisherElsevier
dc.relation.projectIDAGL2003-06862-C02-02
dc.relation.projectIDAGL2006-12112-C03-02/ALI
dc.relation.projectIDCCG06-UCM/ESP-1110
dc.rights.accessRightsopen access
dc.subject.cdu517.986.6
dc.subject.cdu517.518.45
dc.subject.keywordFactorization
dc.subject.keywordBoundary value problem
dc.subject.keywordHilbert–Schmidt operator
dc.subject.keywordRiccati equation
dc.subject.keywordInvariant embedding
dc.subject.keywordNeumann to Dirichlet (NtD) operator
dc.subject.keywordDirichlet to Neumann (DtN) operator
dc.subject.keywordTransparent conditions
dc.subject.ucmAnálisis matemático
dc.subject.unesco1202 Análisis y Análisis Funcional
dc.titleStudy of the Initial Value Problems Appearing in a Factorization Method of Second Order Elliptic Boundary Value Problems
dc.typejournal article
dc.volume.number68
dspace.entity.typePublication
relation.isAuthorOfPublication581c3cdf-f1ce-41e0-ac1e-c32b110407b1
relation.isAuthorOfPublication.latestForDiscovery581c3cdf-f1ce-41e0-ac1e-c32b110407b1

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2006study-16.pdf
Size:
330.16 KB
Format:
Adobe Portable Document Format

Collections