Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Open subgroups and Pontryagin duality

Loading...
Thumbnail Image

Full text at PDC

Publication date

1994

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Springer
Citations
Google Scholar

Citation

Abstract

For an abelian topological group G, let G∧ denote the character group of G. The group G is called reflexive if the evaluation map is a topological isomorphism of G onto G∧∧, and G is called strongly reflexive if all closed subgroups and quotient groups of G and G∧ are reflexive. In this paper the authors study the relationship of reflexivity (and strong reflexivity) among G, A, and G/K, where A is an open subgroup and K a compact subgroup of G. Strong reflexivity is closely connected with the notion of strong duality introduced by R. Brown, P. J. Higgins and S. A. Morris [Math. Proc. Cambridge Philos. Soc. 78 (1975), 19–32]. In fact, G is strongly reflexive if and only if the natural homomorphism G∧×G→T is a strong duality. R. Venkataraman [Math. Z. 143 (1975), no. 2, 105–112] originally claimed that if G is reflexive, then so is A. However, his proof includes inaccuracies. The present paper includes a new proof in this regard. In all, the following theorems are proved. Theorem 1: G is reflexive [resp. strongly reflexive] if and only if A is reflexive [resp. strongly reflexive]. Theorem 2: If G admits sufficiently many continuous characters and G/K is reflexive [resp. strongly reflexive], then G is reflexive [resp. strongly reflexive]. Conversely, if G is reflexive and K is dually closed in G, then G/K is reflexive. Theorem 3: Every closed subgroup H and the quotient group G/H of a strongly reflexive group G are strongly reflexive

Research Projects

Organizational Units

Journal Issue

Description

UCM subjects

Unesco subjects

Keywords

Collections