Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Open subgroups and Pontryagin duality

dc.contributor.authorBanaszczyk, W
dc.contributor.authorChasco, M.J.
dc.contributor.authorMartín Peinador, Elena
dc.date.accessioned2023-06-20T18:46:03Z
dc.date.available2023-06-20T18:46:03Z
dc.date.issued1994-01
dc.description.abstractFor an abelian topological group G, let G∧ denote the character group of G. The group G is called reflexive if the evaluation map is a topological isomorphism of G onto G∧∧, and G is called strongly reflexive if all closed subgroups and quotient groups of G and G∧ are reflexive. In this paper the authors study the relationship of reflexivity (and strong reflexivity) among G, A, and G/K, where A is an open subgroup and K a compact subgroup of G. Strong reflexivity is closely connected with the notion of strong duality introduced by R. Brown, P. J. Higgins and S. A. Morris [Math. Proc. Cambridge Philos. Soc. 78 (1975), 19–32]. In fact, G is strongly reflexive if and only if the natural homomorphism G∧×G→T is a strong duality. R. Venkataraman [Math. Z. 143 (1975), no. 2, 105–112] originally claimed that if G is reflexive, then so is A. However, his proof includes inaccuracies. The present paper includes a new proof in this regard. In all, the following theorems are proved. Theorem 1: G is reflexive [resp. strongly reflexive] if and only if A is reflexive [resp. strongly reflexive]. Theorem 2: If G admits sufficiently many continuous characters and G/K is reflexive [resp. strongly reflexive], then G is reflexive [resp. strongly reflexive]. Conversely, if G is reflexive and K is dually closed in G, then G/K is reflexive. Theorem 3: Every closed subgroup H and the quotient group G/H of a strongly reflexive group G are strongly reflexive
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipD.G.I.C.Y.T.
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/21761
dc.identifier.doi10.1007/BF02571709
dc.identifier.issn0025-5874
dc.identifier.officialurlhttp://gdz.sub.uni-goettingen.de/dms/load/img/?PPN=PPN266833020_0215&DMDID=DMDLOG_0027
dc.identifier.relatedurlhttp://gdz.sub.uni-goettingen.de
dc.identifier.urihttps://hdl.handle.net/20.500.14352/58553
dc.issue.number1
dc.journal.titleMathematische Zeitschrift
dc.language.isoeng
dc.page.final204
dc.page.initial195
dc.publisherSpringer
dc.relation.projectIDBE91-031
dc.rights.accessRightsrestricted access
dc.subject.cdu515.1
dc.subject.cdu512.546
dc.subject.ucmTopología
dc.subject.unesco1210 Topología
dc.titleOpen subgroups and Pontryagin duality
dc.typejournal article
dc.volume.number215
dcterms.referencesBanaszczyk, W.: Additive subgroups of topological vector spaces. (Lect. Notes Math., vol. 1466) Berlin Heidelberg New York: Springer 1991 Brown, R., Higgins, P.J., Morris, S.A.: Countable products and sums of lines and circles: their closed subgroups, quotients and duality properties. Math. Proc. Camb. Philos. Soc.78, 19–32 (1975) Kaplan, S.: Extensions of the Pontrjagin duality. I. Infinite products. Duke Math. J.15, 649–658 (1948) Noble, N.:k-groups and duality. Trans. Am. Math. Soc.151, 551–561 (1970) Venkataraman, R.: Extensions of Pontryagin duality. Math. Z.143, 105–112 (1975)
dspace.entity.typePublication
relation.isAuthorOfPublication0074400c-5caa-43fa-9c45-61c4b6f02093
relation.isAuthorOfPublication.latestForDiscovery0074400c-5caa-43fa-9c45-61c4b6f02093

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
MPeinador108.pdf
Size:
911.34 KB
Format:
Adobe Portable Document Format

Collections