Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Reconstructing the stellar mass distributions of galaxies using S^(4)G Irac 3.6 and 4.5 μm images. I. Correcting for contamination by polycyclic aromatic hydrocarbons, hot dust, and intermediate-age stars

Loading...
Thumbnail Image

Full text at PDC

Publication date

2012

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

American Astronomical Society
Citations
Google Scholar

Citation

Abstract

With the aim of constructing accurate two-dimensional maps of the stellar mass distribution in nearby galaxies from Spitzer Survey of Stellar Structure in Galaxies 3.6 and 4.5 μm images, we report on the separation of the light from old stars from the emission contributed by contaminants. Results for a small sample of six disk galaxies (NGC 1566, NGC 2976, NGC 3031, NGC 3184, NGC 4321, and NGC 5194) with a range of morphological properties, dust content, and star formation histories are presented to demonstrate our approach. To isolate the old stellar light from contaminant emission (e.g., hot dust and the 3.3 μm polycyclic aromatic hydrocarbon (PAH) feature) in the IRAC 3.6 and 4.5 μm bands we use an independent component analysis (ICA) technique designed to separate statistically independent source distributions, maximizing the distinction in the [3.6]-[4.5] colors of the sources. The technique also removes emission from evolved red objects with a low mass-to-light ratio, such as asymptotic giant branch (AGB) and red supergiant (RSG) stars, revealing maps of the underlying old distribution of light with [3.6]-[4.5] colors consistent with the colors of K and M giants. The contaminants are studied by comparison with the non-stellar emission imaged at 8 μm, which is dominated by the broad PAH feature. Using the measured 3.6 μm/8 μm ratio to select individual contaminants, we find that hot dust and PAHs together contribute between ~5% and 15% to the integrated light at 3.6 μm, while light from regions dominated by intermediate-age (AGB and RSG) stars accounts for only 1%-5%. Locally, however, the contribution from either contaminant can reach much higher levels; dust contributes on average 22% to the emission in star-forming regions throughout the sample, while intermediate-age stars contribute upward of 50% in localized knots. The removal of these contaminants with ICA leaves maps of the old stellar disk that retain a high degree of structural information and are ideally suited for tracing stellar mass, as will be the focus in a companion paper.

Research Projects

Organizational Units

Journal Issue

Description

© 2012. The American Astronomical Society. All rights reserved. Artículo firmado por 26 autores. The authors acknowledge the collective effort of the entire S^(4)G team in this project. S.E.M. thanks Seppo Matilla for valuable feedback. E.A. and A.B. thank the Centre National d'Etudes Spatiales for financial support. K.S., J.-C.M.-M., T.K. and T.M. acknowledge support from the National Radio Astronomy Observatory, which is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.

Unesco subjects

Keywords

Collections