Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Reconstructing the stellar mass distributions of galaxies using S^(4)G Irac 3.6 and 4.5 μm images. I. Correcting for contamination by polycyclic aromatic hydrocarbons, hot dust, and intermediate-age stars

dc.contributor.authorGil De Paz, Armando
dc.date.accessioned2023-06-20T04:04:03Z
dc.date.available2023-06-20T04:04:03Z
dc.date.issued2012-01-01
dc.description© 2012. The American Astronomical Society. All rights reserved. Artículo firmado por 26 autores. The authors acknowledge the collective effort of the entire S^(4)G team in this project. S.E.M. thanks Seppo Matilla for valuable feedback. E.A. and A.B. thank the Centre National d'Etudes Spatiales for financial support. K.S., J.-C.M.-M., T.K. and T.M. acknowledge support from the National Radio Astronomy Observatory, which is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.
dc.description.abstractWith the aim of constructing accurate two-dimensional maps of the stellar mass distribution in nearby galaxies from Spitzer Survey of Stellar Structure in Galaxies 3.6 and 4.5 μm images, we report on the separation of the light from old stars from the emission contributed by contaminants. Results for a small sample of six disk galaxies (NGC 1566, NGC 2976, NGC 3031, NGC 3184, NGC 4321, and NGC 5194) with a range of morphological properties, dust content, and star formation histories are presented to demonstrate our approach. To isolate the old stellar light from contaminant emission (e.g., hot dust and the 3.3 μm polycyclic aromatic hydrocarbon (PAH) feature) in the IRAC 3.6 and 4.5 μm bands we use an independent component analysis (ICA) technique designed to separate statistically independent source distributions, maximizing the distinction in the [3.6]-[4.5] colors of the sources. The technique also removes emission from evolved red objects with a low mass-to-light ratio, such as asymptotic giant branch (AGB) and red supergiant (RSG) stars, revealing maps of the underlying old distribution of light with [3.6]-[4.5] colors consistent with the colors of K and M giants. The contaminants are studied by comparison with the non-stellar emission imaged at 8 μm, which is dominated by the broad PAH feature. Using the measured 3.6 μm/8 μm ratio to select individual contaminants, we find that hot dust and PAHs together contribute between ~5% and 15% to the integrated light at 3.6 μm, while light from regions dominated by intermediate-age (AGB and RSG) stars accounts for only 1%-5%. Locally, however, the contribution from either contaminant can reach much higher levels; dust contributes on average 22% to the emission in star-forming regions throughout the sample, while intermediate-age stars contribute upward of 50% in localized knots. The removal of these contaminants with ICA leaves maps of the old stellar disk that retain a high degree of structural information and are ideally suited for tracing stellar mass, as will be the focus in a companion paper.
dc.description.departmentDepto. de Física de la Tierra y Astrofísica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipCentre National d'Etudes Spatiales
dc.description.sponsorshipNational Radio Astronomy Observatory
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/35303
dc.identifier.doi10.1088/0004-637X/744/1/17
dc.identifier.issn0004-637X
dc.identifier.officialurlhttp://dx.doi.org/10.1088/0004-637X/744/1/17
dc.identifier.relatedurlhttp://iopscience.iop.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/44871
dc.issue.number1
dc.journal.titleAstrophysical journal
dc.language.isoeng
dc.publisherAmerican Astronomical Society
dc.rights.accessRightsopen access
dc.subject.cdu52
dc.subject.keywordIndependent component analysis
dc.subject.keywordSpectral energy-distributions
dc.subject.keywordSpitzer-space-telescope
dc.subject.keywordInfrared array camera
dc.subject.keywordSpiral density waves
dc.subject.keywordNearby galaxies
dc.subject.keywordSecular evolution
dc.subject.keywordPopulation synthesis
dc.subject.keywordRadial-distribution
dc.subject.keywordSurface photometry
dc.subject.ucmAstrofísica
dc.subject.ucmAstronomía (Física)
dc.titleReconstructing the stellar mass distributions of galaxies using S^(4)G Irac 3.6 and 4.5 μm images. I. Correcting for contamination by polycyclic aromatic hydrocarbons, hot dust, and intermediate-age stars
dc.typejournal article
dc.volume.number744
dcterms.referencesAniano, G., Draine, B. T., Gordon, K. D., & Sandstrom, K. 2011, PASP, 123, 1218 Bakes, E. L. O., Tielens, A. G. G. M., Bauschlicher, C. W., Jr., Hudgins, D. M., & Allamandola, L. J. 2001, ApJ, 560, 261 Balcells, M., Graham, A. W., Domínguez Palmero, L., & Peletier, R. F. 2003, ApJ, 582, L79 Bell, E. F., & de Jong, R. S. 2001, ApJ, 550, 212 Bendo, G. J., Draine, B. T., Engelbracht, C. W., et al. 2008, MNRAS, 389, 629 Blain, A. W., Barnard, V. E., & Chapman, S. C. 2003, MNRAS, 338, 733 Block, D. L., Buta, R., Knapen, J. H., et al. 2004, AJ, 128, 183 Bolatto, A. D., Simon, J. D., Stanimirović, S., et al. 2007, ApJ, 655, 212 Bonanos, A. Z., Lennon, D. J., Köhlinger, F., et al. 2010, AJ, 40, 416 Bruzual, G., & Charlot, S. 2003, MNRAS, 344, 1000 Buta, R. J., Sheth, K., Regan, M., et al. 2010, ApJS, 190, 147 Calzetti, D., Kennicutt, R. C., Engelbracht, C. W., et al. 2007, ApJ, 666, 870 Courteau, S., de Jong, R. S., & Broeils, A. H. 1996, ApJ, 457, L73 Dale, D. A., Bendo, G. J., Engelbracht, C. W., et al. 2005, ApJ, 633, 857 Davidge, T. J. 2009, ApJ, 697, 1439 de Blok, W. J. G., Walter, F., Brinks, F., et al. 2008, AJ, 136, 2648 de Vaucouleurs, G., de Vaucouleurs, A., Corwin, H. G., et al. 1991, Third Reference Catalog of Bright Galaxies (New York: Springer) Draine, B. T., Dale, D. A., Bendo, G., et al. 2007, ApJ, 663, 866 Elmegreen, B. G., & Elmegreen, D. M. 2010, ApJ, 722, 1895 Elmegreen, B. G., Elmegreen, D. M., Knapen, J. H., et al. 2007, ApJ, 670, L97 Elmegreen, D. M., & Elmegreen, B. G. 1984, ApJS, 54, 127 Elmegreen, D. M., Elmegreen, B. G., Marcus, M. T., et al. 2009, ApJ, 701, 306 Fazio, G. G., Ashby, M. L. N., Barmby, P., et al. 2004, ApJS, 154, 39 Flagey, N., Boulanger, F., Verstraete, L., et al. 2006, A&A, 453, 969 Florido, E., Battaner, E., Guijarro, A., Garzón, F., & Jiménez Vicente, J. 2001, A&A, 378, 82 Foyle, K., Rix, H.-W., & Zibetti, Z. 2010, MNRAS, 407, 163 Gordon, K. D., Engelbracht, C. W., Rieke, G. H., et al. 2008, ApJ, 682, 336 Governato, F., Willman, B., Mayer, L., et al. 2007, MNRAS, 374, 1479 Groenewegen, M. A. T. 2006, A&A, 448, 181 Grosbøl, P. 1993, PASP, 105, 651 Guo, Q., & White, S. D. 2008, MNRAS, 384, 2 Haan, S., Schinnerer, E., Emsellem, E., et al. 2009, ApJ, 692, 1623 Helou, G., Roussel, H., Appleton, P., et al. 2004, ApJS, 154, 253 Ho, L. C. 2008, ARA&A, 46, 475 Ho, L. C., Filippenko, A. V., & Sargent, W. L. W. 1996, ApJ, 462, 183 Hoyer, P. 2004, J. Mach. Learn. Res., 5, 1457 Hunter, D. A., Elmegreen, B. G., & Martin, E. 2006, AJ, 132, 801 Hyvärinen, A. 1999, IEEE Signal Process. Lett., 6, 145 Hyvärinen, A., & Oja, E. 2000, Neural Netw., 13, 411 Jackson, D. C., Skillman, E. D., Gehrz, R. D., Polomski, E., & Woodward, C. E. 2007, ApJ, 656, 818 Jarrett, T. H., Chester, T., Cutri, R., et al. 2000, AJ, 119, 2498 Kendall, S., Kennicutt, R. C., & Clarke, C. 2011, MNRAS, 414, 538 Kendall, S., Kennicutt, R. C., Clarke, C., & Thornley, M. D. 2008, MNRAS, 387, 1007 Kennicutt, R. C., Jr., Armus, L., Bendo, G., et al. 2003, PASP, 115, 928 Kormendy, J., & Kennicutt, R. C. 2004, ARA&A, 42, 603 Laurikainen, E., Salo, H., Buta, R., & Vasylyev, S. 2004, MNRAS, 355, 1251 Leroy, A., Walter, F., Brinks, E., et al. 2008, AJ, 136, 2782 Maino, D., Banday, A. J., Baccigalupi, C., Perrotta, F., & Gorski, K. M. 2003, MNRAS, 344, 544 Maino, D., Donzelli, S., Banday, A. J., Baccigalupi, C., & Stivoli, F. 2007, MNRAS, 374, 1207 Maraston, C. 2005, MNRAS, 362, 799 Mentuch, E., Abraham, R. G., Glazebrook, K., et al. 2009, ApJ, 706, 1020 Mentuch, E., Abraham, R. G., & Zibetti, S. 2010, ApJ, 725, 1971 Mouhcine, M., & Lançon, A. 2002, A&A, 393, 149 Moustakas, J., Kennicutt, R. C., Tremonti, C. A., et al. 2010, ApJS, 190, 233 Muñoz Mateos, J. C., Gil de Paz, A., Boissier, S., et al. 2009a, ApJ, 701, 1965 Muñoz Mateos, J. C., Gil de Paz, A., Zamorano, J., et al. 2009b, ApJ, 703, 1569 Navarro, J. F., & White, S. D. M. 1994, MNRAS, 267, 401 Oh, S.-H., de Blok, W. J. G., Walter, F., Brinks, E., & Kennicutt, R. C. 2008, AJ, 136, 2761 Pahre, M. A., Ashby, M. L. N., Fazio, G. G., & Willner, S. P. 2004a, ApJS, 154, 229 Pahre, M. A., Ashby, M. L. N., Fazio, G. G., & Willner, S. P. 2004b, ApJS, 154, 235 Quataert, E., Di Matteo, T., & Narayan, R. 1999, ApJ, 525, L89 Quillen, A. C., Frogel, J. A., Kenney, J. D. P., Pogge, R. W., & Depoy, D. L. 1995, ApJ, 441, 549 Reach, W. T., Megeath, S. T., Cohen, M., et al. 2005, PASP, 117, 978 Rhoads, J. E. 1998, AJ, 115, 472 Rix, H.-W., & Rieke, M. J. 1993, ApJ, 418, 123 Rix, H.-W., & Zaritsky, D. 1995, ApJ, 447, 82 Salo, H. 2010, http://sun3.oulu.fi/ hsalo/galfidl.html Salo, H., Laurikainen, E., Buta, R., & Knapen, J. H. 2010, ApJ, 715, L56 Sheth, K., et al. 2010, PASP, 122, 1397 Smith, J. D. T., Draine, B. T., Dale, D. A., et al. 2007, ApJ, 656, 770 Somerville, R. S. 2002, ApJ, 572, L23 Stark, A. 1977, ApJ, 213, 368 Temi, P., Brighenti, F., & Mathews, W. G. 2008, ApJ, 672, 244 Willner, S. P., Ashby, M. L. N., Barmby, P., et al. 2004, ApJS, 154, 222 Zaritsky, D., & Lo, K. Y. 1986, ApJ, 303, 66 Zhang, X., & Buta, R. 2007, AJ, 133, 2584 Zibetti, S., Charlot, S., & Rix, H.-W. 2009, MNRAS, 400, 1181
dspace.entity.typePublication
relation.isAuthorOfPublication7fb1c66f-848a-4aa3-a350-88c633947323
relation.isAuthorOfPublication.latestForDiscovery7fb1c66f-848a-4aa3-a350-88c633947323

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
gildepaz46libre.pdf
Size:
3.22 MB
Format:
Adobe Portable Document Format

Collections