Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Two faces of quantum sound

dc.contributor.authorBarceló, C.
dc.contributor.authorGaray Elizondo, Luis Javier
dc.contributor.authorJannes, G.
dc.date.accessioned2023-06-20T03:50:14Z
dc.date.available2023-06-20T03:50:14Z
dc.date.issued2010-08-25
dc.description© 2010 The American Physical Society. Financial support was provided by the Spanish MICINN through Projects No. FIS2008-06078-C03-01 and No. FIS2008-06078-C03-03 and Consolider-Ingenio 2010 Program CPAN (CSD2007-00042) and by the Junta de Andalucía through Projects No. FQM2288 and No. FQM219. The authors want to thank S. Finazzi, S. Liberati, G. A. Mena Marugán, and R. Parentani for illuminating discussions.
dc.description.abstractFluctuations around a Bose-Einstein condensate can be described by means of Bogolubov theory leading to the notion of quasiparticle and antiquasiparticle familiar to nonrelativistic condensed-matter practitioners. On the other hand, we already know that these perturbations evolve according to a relativistic Klein-Gordon equation in the long-wavelength approximation. For shorter wavelengths, we show that this equation acquires nontrivial corrections which modify the Klein-Gordon product. In this approach, quasiparticles can also be defined (up to the standard ambiguities due to observer dependence). We demonstrate that-in the low-energy as well as in the high-energy regimes-both concepts of quasiparticle are actually the same, regardless of the formalism (Bogolubov or Klein-Gordon) used to describe them. These results also apply to any barotropic, inviscid, irrotational fluid, with or without quantum potential. Finally, we illustrate how the quantization of these systems of quasiparticles proceeds by analyzing a stationary configuration containing an acoustic horizon. We show that there are several possible choices of a regular vacuum state, including a regular generalization of the Boulware vacuum. Issues such us Hawking radiation crucially depend on this vacuum choice.
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipSpanish MICINN
dc.description.sponsorshipJunta de Andalucia
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/29816
dc.identifier.doi10.1103/PhysRevD.82.044042
dc.identifier.issn1550-7998
dc.identifier.officialurlhttp://dx.doi.org/10.1103/PhysRevD.82.044042
dc.identifier.relatedurlhttp://journals.aps.org/
dc.identifier.relatedurlhttp://arxiv.org/pdf/1006.0181v3.pdf
dc.identifier.urihttps://hdl.handle.net/20.500.14352/44530
dc.issue.number4
dc.journal.titlePhysical review D
dc.language.isoeng
dc.publisherAmer Physical Soc
dc.relation.projectIDFIS2008-06078-C03-01
dc.relation.projectIDFIS2008-06078-C03-03
dc.relation.projectIDCSD2007-00042
dc.relation.projectIDFQM2288
dc.relation.projectIDFQM219
dc.rights.accessRightsopen access
dc.subject.cdu51-73
dc.subject.keywordBlack-holes
dc.subject.keywordAnalog
dc.subject.keywordSpacetimes
dc.subject.keywordHorizons
dc.subject.ucmFísica-Modelos matemáticos
dc.subject.ucmFísica matemática
dc.titleTwo faces of quantum sound
dc.typejournal article
dc.volume.number82
dcterms.references[1] R. W. White, J. Acoust. Soc. Am. 53, 1700 (1973). [2] W. G. Unruh, Phys. Rev. Lett. 46, 1351 (1981). [3] M. Visser, Classical Quantum Gravity 15, 1767 (1998). [4] C. Barceló, S. Liberati, and M. Visser, Living Rev. Relativity 8, 12 (2005), http://relativity.livingreviews.org/ Articles/lrr-2005-12. [5] G. E. Volovik, Ann. Phys. (N.Y.) 14, 165 (2005). [6] C. Barceló, L. J. Garay, and G. Jannes, arXiv:1002.4651. [7] L. J. Garay, J. R. Anglin, J. I. Cirac, and P. Zoller, Phys. Rev. Lett. 85, 4643 (2000). [8] L. J. Garay, J. R. Anglin, J. I. Cirac, and P. Zoller, Phys. Rev. A 63, 023611 (2001). [9] O. Lahav, A. Itah, A. Blumkin, C. Gordon, and J. Steinhauer, arXiv:0906.1337. [10] I. Carusotto, S. Fagnocchi, A. Recati, R. Balbinot, and A. Fabbri, New J. Phys. 10, 103001 (2008). [11] S. Liberati, M. Visser, and S. Weinfurtner, Classical Quantum Gravity 23, 3129 (2006). [12] C. Barceló, A. Cano, L. J. Garay, and G. Jannes, Phys. Rev. D 75, 084024 (2007). [13] Y. Kurita, M. Kobayashi, T. Morinari, M. Tsubota, and H. Ishihara, Phys. Rev. A 79, 043616 (2009). [14] A. L. Fetter, Ann. Phys. (N.Y.) 70, 67 (1972). [15] Y. Castin, arXiv:cond-mat/0105058. [16] S. Corley and T. Jacobson, Phys. Rev. D 59, 124011 (1999). [17] J. Macher and R. Parentani, Phys. Rev. A 80, 043601 (2009). [18] C. Barceló, L. J. Garay, and G. Jannes, Phys. Rev. D 79, 024016 (2009). [19] C. Barceló, S. Liberati, S. Sonego, and M. Visser, New J. Phys. 6, 186 (2004). [20] J. Macher and R. Parentani, Phys. Rev. D 79, 124008 (2009). [21] R. M. Wald, Quantum Field Theory in Curved Space-Time and Black Hole Thermodynamics (Chicago University Press, Chicago, 1994). [22] I. Racz and R. M. Wald, Classical Quantum Gravity 9, 2643 (1992).
dspace.entity.typePublication
relation.isAuthorOfPublication5638c18d-1c35-40d2-8b77-eb558c27585e
relation.isAuthorOfPublication.latestForDiscovery5638c18d-1c35-40d2-8b77-eb558c27585e

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Garay14.pdf
Size:
298.6 KB
Format:
Adobe Portable Document Format

Collections