Two faces of quantum sound

Thumbnail Image
Full text at PDC
Publication Date
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
Amer Physical Soc
Google Scholar
Research Projects
Organizational Units
Journal Issue
Fluctuations around a Bose-Einstein condensate can be described by means of Bogolubov theory leading to the notion of quasiparticle and antiquasiparticle familiar to nonrelativistic condensed-matter practitioners. On the other hand, we already know that these perturbations evolve according to a relativistic Klein-Gordon equation in the long-wavelength approximation. For shorter wavelengths, we show that this equation acquires nontrivial corrections which modify the Klein-Gordon product. In this approach, quasiparticles can also be defined (up to the standard ambiguities due to observer dependence). We demonstrate that-in the low-energy as well as in the high-energy regimes-both concepts of quasiparticle are actually the same, regardless of the formalism (Bogolubov or Klein-Gordon) used to describe them. These results also apply to any barotropic, inviscid, irrotational fluid, with or without quantum potential. Finally, we illustrate how the quantization of these systems of quasiparticles proceeds by analyzing a stationary configuration containing an acoustic horizon. We show that there are several possible choices of a regular vacuum state, including a regular generalization of the Boulware vacuum. Issues such us Hawking radiation crucially depend on this vacuum choice.
© 2010 The American Physical Society. Financial support was provided by the Spanish MICINN through Projects No. FIS2008-06078-C03-01 and No. FIS2008-06078-C03-03 and Consolider-Ingenio 2010 Program CPAN (CSD2007-00042) and by the Junta de Andalucía through Projects No. FQM2288 and No. FQM219. The authors want to thank S. Finazzi, S. Liberati, G. A. Mena Marugán, and R. Parentani for illuminating discussions.
Unesco subjects
[1] R. W. White, J. Acoust. Soc. Am. 53, 1700 (1973). [2] W. G. Unruh, Phys. Rev. Lett. 46, 1351 (1981). [3] M. Visser, Classical Quantum Gravity 15, 1767 (1998). [4] C. Barceló, S. Liberati, and M. Visser, Living Rev. Relativity 8, 12 (2005), Articles/lrr-2005-12. [5] G. E. Volovik, Ann. Phys. (N.Y.) 14, 165 (2005). [6] C. Barceló, L. J. Garay, and G. Jannes, arXiv:1002.4651. [7] L. J. Garay, J. R. Anglin, J. I. Cirac, and P. Zoller, Phys. Rev. Lett. 85, 4643 (2000). [8] L. J. Garay, J. R. Anglin, J. I. Cirac, and P. Zoller, Phys. Rev. A 63, 023611 (2001). [9] O. Lahav, A. Itah, A. Blumkin, C. Gordon, and J. Steinhauer, arXiv:0906.1337. [10] I. Carusotto, S. Fagnocchi, A. Recati, R. Balbinot, and A. Fabbri, New J. Phys. 10, 103001 (2008). [11] S. Liberati, M. Visser, and S. Weinfurtner, Classical Quantum Gravity 23, 3129 (2006). [12] C. Barceló, A. Cano, L. J. Garay, and G. Jannes, Phys. Rev. D 75, 084024 (2007). [13] Y. Kurita, M. Kobayashi, T. Morinari, M. Tsubota, and H. Ishihara, Phys. Rev. A 79, 043616 (2009). [14] A. L. Fetter, Ann. Phys. (N.Y.) 70, 67 (1972). [15] Y. Castin, arXiv:cond-mat/0105058. [16] S. Corley and T. Jacobson, Phys. Rev. D 59, 124011 (1999). [17] J. Macher and R. Parentani, Phys. Rev. A 80, 043601 (2009). [18] C. Barceló, L. J. Garay, and G. Jannes, Phys. Rev. D 79, 024016 (2009). [19] C. Barceló, S. Liberati, S. Sonego, and M. Visser, New J. Phys. 6, 186 (2004). [20] J. Macher and R. Parentani, Phys. Rev. D 79, 124008 (2009). [21] R. M. Wald, Quantum Field Theory in Curved Space-Time and Black Hole Thermodynamics (Chicago University Press, Chicago, 1994). [22] I. Racz and R. M. Wald, Classical Quantum Gravity 9, 2643 (1992).