Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Unruh Effect without Thermality

Loading...
Thumbnail Image

Full text at PDC

Publication date

2019

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

American Physical Society
Citations
Google Scholar

Citation

Abstract

We show that uniformly accelerated detectors can display genuinely thermal features even if the Kubo-Martin-Schwinger (KMS) condition fails to hold. These features include satisfying thermal detailed balance and having a Planckian response identical to cases in which the KMS condition is satisfied. In this context, we discuss that satisfying the KMS condition for accelerated trajectories is just sufficient but not necessary for the Unruh effect to be present in a given quantum field theory. Furthermore, we extract the necessary and sufficient conditions for the response function of an accelerated detector to be thermal in the infinitely adiabatic limit. This analysis provides new insight about the interplay between the KMS condition and the Unruh effect, and a solid framework in which the robustness of the Unruh effect against deformations of quantum field theories (perhaps Lorentz-violating) can be answered unambiguously. © 2019 American Physical Society.

Research Projects

Organizational Units

Journal Issue

Description

Unesco subjects

Keywords

Collections