Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Minimally Conditioned Likelihood for a Nonstationary State Space Model

Loading...
Thumbnail Image

Official URL

Full text at PDC

Publication date

2012

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Citations
Google Scholar

Citation

Abstract

Computing the gaussian likelihood for a nonstationary state-space model is a difficult problem which has been tackled by the literature using two main strategies: data transformation and diffuse likelihood. The data transformation approach is cumbersome, as it requires nonstandard filtering. On the other hand, in some nontrivial cases the diffuse likelihood value depends on the scale of the diffuse states, so one can obtain different likelihood values corresponding to different observationally equivalent models. In this paper we discuss the properties of the minimally-conditioned likelihood function, as well as two efficient methods to compute its terms with computational advantages for specific models. Three convenient features of the minimally-conditioned likelihood are: (a) it can be computed with standard Kalman filters, (b) it is scale-free, and (c) its values are coherent with those resulting from differencing, being this the most popular approach to deal with nonstationary data.

Research Projects

Organizational Units

Journal Issue

Description

Unesco subjects

Keywords