Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Phase-shifting interferometry corrupted by white and non-white additive noise

Loading...
Thumbnail Image

Full text at PDC

Publication date

2011

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

The Optical Society Of America
Citations
Google Scholar

Citation

Abstract

The standard tool to estimate the phase of a sequence of phase-shifted interferograms is the Phase Shifting Algorithm (PSA). The performance of PSAs to a sequence of interferograms corrupted by non-white additive noise has not been reported before. In this paper we use the Frequency Transfer Function (FTF) of a PSA to generalize previous white additive noise analysis to non-white additive noisy interferograms. That is, we find the ensemble average and the variance of the estimated phase in a general PSA when interferograms corrupted by non-white additive noise are available. Moreover, for the special case of additive white-noise, and using the Parseval's theorem, we show (for the first time in the PSA literature) a useful relationship of the PSA's noise robustness; in terms of its FTF spectrum, and in terms of its coefficients. In other words, we find the PSA's estimated phase variance, in the spectral space as well as in the PSA's coefficients space.

Research Projects

Organizational Units

Journal Issue

Description

© The Optical Society of America. We appreciate the support of the Mexican Science and Technology Council CONACYT.

UCM subjects

Keywords

Collections