Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Phase-shifting interferometry corrupted by white and non-white additive noise

dc.contributor.authorQuiroga Mellado, Juan Antonio
dc.contributor.authorServín Guirado, Manuel
dc.contributor.authorEstrada, Julio César
dc.date.accessioned2023-06-20T03:34:29Z
dc.date.available2023-06-20T03:34:29Z
dc.date.issued2011-05-09
dc.description© The Optical Society of America. We appreciate the support of the Mexican Science and Technology Council CONACYT.
dc.description.abstractThe standard tool to estimate the phase of a sequence of phase-shifted interferograms is the Phase Shifting Algorithm (PSA). The performance of PSAs to a sequence of interferograms corrupted by non-white additive noise has not been reported before. In this paper we use the Frequency Transfer Function (FTF) of a PSA to generalize previous white additive noise analysis to non-white additive noisy interferograms. That is, we find the ensemble average and the variance of the estimated phase in a general PSA when interferograms corrupted by non-white additive noise are available. Moreover, for the special case of additive white-noise, and using the Parseval's theorem, we show (for the first time in the PSA literature) a useful relationship of the PSA's noise robustness; in terms of its FTF spectrum, and in terms of its coefficients. In other words, we find the PSA's estimated phase variance, in the spectral space as well as in the PSA's coefficients space.
dc.description.departmentDepto. de Óptica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMexican Science and Technology Council CONACYT
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/22247
dc.identifier.doi10.1364/OE.19.009529
dc.identifier.issn1094-4087
dc.identifier.officialurlhttp://dx.doi.org/10.1364/OE.19.009529
dc.identifier.relatedurlhttp://www.opticsinfobase.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/43921
dc.issue.number10
dc.journal.titleOptics Express
dc.language.isoeng
dc.page.final9534
dc.page.initial9529
dc.publisherThe Optical Society Of America
dc.rights.accessRightsopen access
dc.subject.cdu535
dc.subject.keywordAlgorithms
dc.subject.ucmÓptica (Física)
dc.subject.unesco2209.19 Óptica Física
dc.titlePhase-shifting interferometry corrupted by white and non-white additive noise
dc.typejournal article
dc.volume.number19
dcterms.references1. J. H. Bruning, D. R. Herriott, J. E. Gallagher, D. P. Rosenfeld, A. D. White, and D. J. Brangaccio, “Digital wavefront measuring interferometer for testing optical surfaces and lenses,” Appl. Opt. 13(11), 2693–2703 (1974). 2. D. Malacara, M. Servín, and Z. Malacara, Interferogram Analysis for Optical Testing, Taylor & Francis CRC Press, 2th edition (2005). 3. M. Servín, J. C. Estrada, J. A. Quiroga, J. F. Mosiño, and M. Cywiak, “Noise in phase shifting interferometry,” Opt. Express 17(11), 8789–8794 (2009). 4. M. Servín, J. C. Estrada, and J. A. Quiroga, “The general theory of phase shifting algorithms,” Opt. Express 17(24), 21867–21881 (2009). 5. C. P. Brophy, “Effect of intensity error correlation on the computed phase of phase-shifting interferometry,” J. Opt. Soc. Am. A 7(4), 537–541 (1990). 6. C. Rathjen, “Statistical properties of phase-shift algorithms,” J. Opt. Soc. Am. 12(9), 1997–2008 (1995). 7. Y. Surrel, “Additive noise effect in digital phase detection,” Appl. Opt. 36(1), 271–276 (1997). 8. K. Hibino, “Susceptibility of systematic error-compensating algorithms to random noise in phase-shiftinginterferometry,” Appl. Opt. 36, 2064–2093 (1997). 9. A. Papoulis, Probability Random Variables and Stochastic Processes, McGraw-Hill Series in Electrical Engineering, 4th edition (2001). 10. C. J. Morgan, “Least-squares estimation in phase-measurement interferometry,” Opt. Lett. 7(8), 368–370 (1982). 11. J. Schwider, R. Burow, K. E. Elssner, J. Grzanna, R. Spolaczyk, and K. Merkel, “Digital wave-front measuring interferometry: some systematic error sources,” Appl. Opt. 22(21), 3421–3432 (1983). 12. P. Hariharan, B. F. Oreb, and T. Eiju, “Digital phase-shifting interferometry: a simple error-compensating phase calculation algorithm,” Appl. Opt. 26(13), 2504–2506 (1987).
dspace.entity.typePublication
relation.isAuthorOfPublication1c171089-8e25-448f-bcce-28d030f8f43a
relation.isAuthorOfPublication.latestForDiscovery1c171089-8e25-448f-bcce-28d030f8f43a

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
QuirogaJA11.pdf
Size:
886.02 KB
Format:
Adobe Portable Document Format

Collections