Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Modification of Bacterial Cellulose Biofilms with Xylan Polyelectrolytes

Loading...
Thumbnail Image

Full text at PDC

Publication date

2017

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

MDPI
Citations
Google Scholar

Citation

Abstract

The effect of the addition of two [4-butyltrimethylammonium]-xylan chloride polyelectrolytes (BTMAXs) on bacterial cellulose (BC) was evaluated. The first strategy was to add the polyelectrolytes to the culture medium together with a cell suspension of the bacterium. After one week of cultivation, the films were collected and purified. The second approach consisted of obtaining a purified and homogenized BC, to which the polyelectrolytes were added subsequently. The films were characterized in terms of tear and burst indexes, optical properties, surface free energy, static contact angle, Gurley porosity, SEM, X-ray diffraction and AFM. Although there are small differences in mechanical and optical properties between the nanocomposites and control films, the films obtained by BC synthesis in the presence of BTMAXs were remarkably less opaque, rougher, and had a much lower specular gloss. The surface free energy depends on the BTMAXs addition method. The crystallinity of the composites is lower than that of the control material, with a higher reduction of this parameter in the composites obtained by adding the BTMAXs to the culture medium. In view of these results, it can be concluded that BC–BTMAX composites are a promising new material, for example, for paper restoration.

Research Projects

Organizational Units

Journal Issue

Description

Keywords

Collections