Concentration fluctuations in nonisothermal reaction-diffusion systems

Thumbnail Image
Full text at PDC
Publication Date
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
American Institute of Physics
Google Scholar
Research Projects
Organizational Units
Journal Issue
In this paper a simple reaction-diffusion system, namely a binary fluid mixture with an association-dissociation reaction between the two components, is considered. Fluctuations at hydrodynamic spatiotemporal scales when a temperature gradient is present in this chemically reacting system are studied. First, fluctuating hydrodynamics when the system is in global equilibrium (isothermal) is reviewed. Comparing the two cases, an enhancement of the intensity of concentration fluctuations in the presence of a temperature gradient is predicted. The nonequilibrium concentration fluctuations are spatially long ranged, with an intensity depending on the wave number q. The intensity exhibits a crossover from a proportional to q(-4) to a proportional to q(-2) behavior depending on whether the corresponding wavelength is smaller or larger than the penetration depth of the reacting mixture. This opens a possibility to distinguish between diffusion- or activation-controlled regimes of the reaction by measuring these fluctuations. In addition, the possible observation of these fluctuations in nonequilibrium molecular dynamics simulations is considered.
© 2007 American Institute of Physics. J.S. and J.O.Z. acknowledge support from The Research Council of Norway, under Grant No 167336/V30 “Transport on a nano-scale; at surfaces and contact lines.” The authors thank Y. Demirel for some useful comments.
UCM subjects
Unesco subjects
1 G. Froment and K. Bischoff, Chemical Reactor Analysis and Design (Wiley, New York, 1990). 2 A. Stankiewicz and J. A. Moulijn, Re-engineering the Chemical Process Plant. Process Intensification (Marcel Dekker, New York, 2004). 3 J. M. Ortiz de Zárate and J. V. Sengers, J. Stat. Phys. 115, 1341 (2004). 4 J. M. Ortiz de Zárate and J. V. Sengers, Hydrodynamic Fluctuations in Fluids and Fluid Mixtures (Elsevier, Amsterdam, 2006). 5 J. Morud and S. Skogestad, AIChE J. 44, 888 (1998). 6 W. Luyben and D. Hendershot, Ind. Eng. Chem. Res. 43, 384 (2004). 7 J. Xu, S. Kjelstrup, and D. Bedeaux, Phys. Chem. Chem. Phys. 8, 2017 (2006). 8 J. Xu, S. Kjelstrup, D. Bedeaux, and J. M. Simon, Phys. Chem. Chem. Phys. 9, 969 (2007). 9 S. R. de Groot and P. Mazur, Non-Equilibrium Thermodynamics (Dover, New York, 1984). 10 H. N. W. Lekkerkerker and W. G. Laidlaw, Phys. Rev. A 9, 346 (1974). 11 R. Pérez Cordón and M. G. Velarde, J. Physique 36, 591 (1975). 12 I. N. Levine, Physical Chemistry, 3rd ed. (McGraw-Hill, New York, 2001). 13 L. D. Landau and E. M. Lifshitz, Fluid Mechanics, 2nd. rev. ed. (Pergamon, London, 1987). 14 Y. Demirel, Nonequilibrium Thermodynamics (Elsevier, Amsterdam, 2002). 15 M. L. Anderson and R. K. Boyd, Can. J. Chem. 49, 1001 (1971). 16 R. K. Boyd, Chem. Rev. 77, 93 (1977). 17 I. Pagonabarraga, A. Pérez Madrid, and J. M. Rubí, Physica A 237, 205 (1997). 18 D. Reguera, J. M. Rubí, and J. M. G. Vilar, J. Phys. Chem. B 109, 21502 (2005). 19 W. Marques, G. M. Alves, and G. Kremer, Physica A 323, 401 (2003). 20 D. T. Gillespie, J. Chem. Phys. 113, 297 (2000). 21 D. T. Gillespie, J. Chem. Phys. 115, 1716 (2001). 22 R. Zwanzig, J. Phys. Chem. B 105, 6472 (2001). 23 C. W. Gardiner, Handbook of Stochastic Methods, 2nd ed. (Springer, Berlin, 1985). 24 N. G. van Kampen, Phys. Lett. 59A, 333 (1976). 25 N. G. van Kampen, Stochastic Processes in Physics and Chemistry (North-Holland, Amsterdam, 1982). 26 F. Baras, M. Malek Mansour, and J. E. Pearson, J. Chem. Phys. 105, 8257 (1996). 27 B. J. Berne and R. Pecora, Dynamic Light Scattering (Dover, New York, 2000). 28 J. P. Boon and S. Yip, Molecular Hydrodynamics (Dover, New York, 1991). 29 S. P. Trainoff and D. S. Cannell, Phys. Fluids 14, 1340 (2002). 30 D. Brogioli, A. Vailati, and M. Giglio, Phys. Rev. E 61, R1 (2000). 31 L. Letamendia, J. P. Yindoula, C. Vaucamps, and G. Nouchi, Phys. Rev. A 41, 3178 (1990). 32 L. Letamendia, M. Belkadi, G. Nouchi, C. Vaucamps, and M. Benseddik, Phys. Rev. A 48, 2695 (1993). 33 C. Cohen, J. W. H. Sutherland, and J. M. Deutch, Phys. Chem. Liq. 2, 213 (1971). 34 J. P. G. Kehoe and J. B. Butt, AIChE J. 18, 347 (1972). 35 S. S. Au, J. S. Dranoff, and J. B. Butt, Chem. Eng. Sci. 50, 3801 (1995). 36 Y. Demirel, Chem. Eng. Sci. 61, 3379 (2006). 37 E. Johannessen and S. Kjelstrup, Chem. Eng. Sci. 60, 3347 (2005). 38 M. G. Velarde and R. S. Schechter, Phys. Fluids 15, 1707 (1972). 39 J. V. Sengers and J. M. Ortiz de Zárate, in Thermal Nonequilibrium Phenomena in Fluid Mixtures, Vol. 584 of Lecture Notes in Physics, edited by W. Köhler and S. Wiegand (Springer, Berlin, 2002), pp. 121–145. 40 J. M. Ortiz de Zárate, J. A. Fornés, and J. V. Sengers, Phys. Rev. E 74, 046305 (2006). 41 P. N. Segrè, R. W. Gammon, and J. V. Sengers, Phys. Rev. E 47, 1026 (1993). 42 W. B. Li, K. J. Zhang, J. V. Sengers, R. W. Gammon, and J. M. Ortiz de Zárate, Phys. Rev. Lett. 81, 5580 (1998). 43 A. P. Fröba, S. Will, and A. Leipertz, Int. J. Thermophys. 21, 603 (2000). 44 B. Hafskjold and S. Kjelstrup Ratkje, J. Stat. Phys. 78, 463 (1995). 45 A. M. S. Tremblay, M. Arai, and E. D. Siggia, Phys. Rev. A 23, 1451 (1981). 46 J. M. Ortiz de Zárate, R. Pérez Cordón, and J. V. Sengers, Physica A 291, 113 (2001). 47 R. Schmitz and E. G. D. Cohen, J. Stat. Phys. 40, 431 (1985). 48 P. N. Segrè, R. W. Gammon, J. V. Sengers, and B. M. Law, Phys. Rev. A 45, 714 (1992). 49 I. Pagonabarraga, J. M. Rubí, and L. Torner, Physica A 173, 111 (1991). 50 G. Nicolis, A. Amellal, G. Dupont, and M. Mareschal, J. Mol. Liq. 41, 5 (1989). 51W. B. Li, P. N. Segrè, R. W. Gammon, and J. V. Sengers, Physica A 204, 399 (1994).