Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA Disculpen las molestias.
 

Concentration fluctuations in nonisothermal reaction-diffusion systems

dc.contributor.authorOrtiz De Zárate Leira, José María
dc.contributor.authorSengers, Jan V.
dc.contributor.authorBedeaux, Dick
dc.contributor.authorKjelstrup, Signe
dc.date.accessioned2023-06-20T10:47:47Z
dc.date.available2023-06-20T10:47:47Z
dc.date.issued2007-07-21
dc.description© 2007 American Institute of Physics. J.S. and J.O.Z. acknowledge support from The Research Council of Norway, under Grant No 167336/V30 “Transport on a nano-scale; at surfaces and contact lines.” The authors thank Y. Demirel for some useful comments.
dc.description.abstractIn this paper a simple reaction-diffusion system, namely a binary fluid mixture with an association-dissociation reaction between the two components, is considered. Fluctuations at hydrodynamic spatiotemporal scales when a temperature gradient is present in this chemically reacting system are studied. First, fluctuating hydrodynamics when the system is in global equilibrium (isothermal) is reviewed. Comparing the two cases, an enhancement of the intensity of concentration fluctuations in the presence of a temperature gradient is predicted. The nonequilibrium concentration fluctuations are spatially long ranged, with an intensity depending on the wave number q. The intensity exhibits a crossover from a proportional to q(-4) to a proportional to q(-2) behavior depending on whether the corresponding wavelength is smaller or larger than the penetration depth of the reacting mixture. This opens a possibility to distinguish between diffusion- or activation-controlled regimes of the reaction by measuring these fluctuations. In addition, the possible observation of these fluctuations in nonequilibrium molecular dynamics simulations is considered.
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipResearch Council of Norway
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/27328
dc.identifier.doi10.1063/1.2746326
dc.identifier.issn0021-9606
dc.identifier.officialurlhttp://dx.doi.org/10.1063/1.2746326
dc.identifier.relatedurlhttp://scitation.aip.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/51238
dc.issue.number3
dc.journal.titleJournal of Chemical Physics
dc.language.isoeng
dc.publisherAmerican Institute of Physics
dc.relation.projectID167336/V30
dc.rights.accessRightsopen access
dc.subject.cdu536
dc.subject.keywordMolecular-Dynamics Simulations
dc.subject.keywordChemical Langevin Equation
dc.subject.keywordLight-Scattering
dc.subject.keywordNonequilibrium Fluctuations
dc.subject.keywordTemperature-Gradient
dc.subject.keywordThermal-Equilibrium
dc.subject.keywordRayleigh-Scattering
dc.subject.keywordLocal Equilibrium
dc.subject.keywordMixture
dc.subject.keywordFluid
dc.subject.ucmTermodinámica
dc.subject.unesco2213 Termodinámica
dc.titleConcentration fluctuations in nonisothermal reaction-diffusion systems
dc.typejournal article
dc.volume.number127
dcterms.references1 G. Froment and K. Bischoff, Chemical Reactor Analysis and Design (Wiley, New York, 1990). 2 A. Stankiewicz and J. A. Moulijn, Re-engineering the Chemical Process Plant. Process Intensification (Marcel Dekker, New York, 2004). 3 J. M. Ortiz de Zárate and J. V. Sengers, J. Stat. Phys. 115, 1341 (2004). 4 J. M. Ortiz de Zárate and J. V. Sengers, Hydrodynamic Fluctuations in Fluids and Fluid Mixtures (Elsevier, Amsterdam, 2006). 5 J. Morud and S. Skogestad, AIChE J. 44, 888 (1998). 6 W. Luyben and D. Hendershot, Ind. Eng. Chem. Res. 43, 384 (2004). 7 J. Xu, S. Kjelstrup, and D. Bedeaux, Phys. Chem. Chem. Phys. 8, 2017 (2006). 8 J. Xu, S. Kjelstrup, D. Bedeaux, and J. M. Simon, Phys. Chem. Chem. Phys. 9, 969 (2007). 9 S. R. de Groot and P. Mazur, Non-Equilibrium Thermodynamics (Dover, New York, 1984). 10 H. N. W. Lekkerkerker and W. G. Laidlaw, Phys. Rev. A 9, 346 (1974). 11 R. Pérez Cordón and M. G. Velarde, J. Physique 36, 591 (1975). 12 I. N. Levine, Physical Chemistry, 3rd ed. (McGraw-Hill, New York, 2001). 13 L. D. Landau and E. M. Lifshitz, Fluid Mechanics, 2nd. rev. ed. (Pergamon, London, 1987). 14 Y. Demirel, Nonequilibrium Thermodynamics (Elsevier, Amsterdam, 2002). 15 M. L. Anderson and R. K. Boyd, Can. J. Chem. 49, 1001 (1971). 16 R. K. Boyd, Chem. Rev. 77, 93 (1977). 17 I. Pagonabarraga, A. Pérez Madrid, and J. M. Rubí, Physica A 237, 205 (1997). 18 D. Reguera, J. M. Rubí, and J. M. G. Vilar, J. Phys. Chem. B 109, 21502 (2005). 19 W. Marques, G. M. Alves, and G. Kremer, Physica A 323, 401 (2003). 20 D. T. Gillespie, J. Chem. Phys. 113, 297 (2000). 21 D. T. Gillespie, J. Chem. Phys. 115, 1716 (2001). 22 R. Zwanzig, J. Phys. Chem. B 105, 6472 (2001). 23 C. W. Gardiner, Handbook of Stochastic Methods, 2nd ed. (Springer, Berlin, 1985). 24 N. G. van Kampen, Phys. Lett. 59A, 333 (1976). 25 N. G. van Kampen, Stochastic Processes in Physics and Chemistry (North-Holland, Amsterdam, 1982). 26 F. Baras, M. Malek Mansour, and J. E. Pearson, J. Chem. Phys. 105, 8257 (1996). 27 B. J. Berne and R. Pecora, Dynamic Light Scattering (Dover, New York, 2000). 28 J. P. Boon and S. Yip, Molecular Hydrodynamics (Dover, New York, 1991). 29 S. P. Trainoff and D. S. Cannell, Phys. Fluids 14, 1340 (2002). 30 D. Brogioli, A. Vailati, and M. Giglio, Phys. Rev. E 61, R1 (2000). 31 L. Letamendia, J. P. Yindoula, C. Vaucamps, and G. Nouchi, Phys. Rev. A 41, 3178 (1990). 32 L. Letamendia, M. Belkadi, G. Nouchi, C. Vaucamps, and M. Benseddik, Phys. Rev. A 48, 2695 (1993). 33 C. Cohen, J. W. H. Sutherland, and J. M. Deutch, Phys. Chem. Liq. 2, 213 (1971). 34 J. P. G. Kehoe and J. B. Butt, AIChE J. 18, 347 (1972). 35 S. S. Au, J. S. Dranoff, and J. B. Butt, Chem. Eng. Sci. 50, 3801 (1995). 36 Y. Demirel, Chem. Eng. Sci. 61, 3379 (2006). 37 E. Johannessen and S. Kjelstrup, Chem. Eng. Sci. 60, 3347 (2005). 38 M. G. Velarde and R. S. Schechter, Phys. Fluids 15, 1707 (1972). 39 J. V. Sengers and J. M. Ortiz de Zárate, in Thermal Nonequilibrium Phenomena in Fluid Mixtures, Vol. 584 of Lecture Notes in Physics, edited by W. Köhler and S. Wiegand (Springer, Berlin, 2002), pp. 121–145. 40 J. M. Ortiz de Zárate, J. A. Fornés, and J. V. Sengers, Phys. Rev. E 74, 046305 (2006). 41 P. N. Segrè, R. W. Gammon, and J. V. Sengers, Phys. Rev. E 47, 1026 (1993). 42 W. B. Li, K. J. Zhang, J. V. Sengers, R. W. Gammon, and J. M. Ortiz de Zárate, Phys. Rev. Lett. 81, 5580 (1998). 43 A. P. Fröba, S. Will, and A. Leipertz, Int. J. Thermophys. 21, 603 (2000). 44 B. Hafskjold and S. Kjelstrup Ratkje, J. Stat. Phys. 78, 463 (1995). 45 A. M. S. Tremblay, M. Arai, and E. D. Siggia, Phys. Rev. A 23, 1451 (1981). 46 J. M. Ortiz de Zárate, R. Pérez Cordón, and J. V. Sengers, Physica A 291, 113 (2001). 47 R. Schmitz and E. G. D. Cohen, J. Stat. Phys. 40, 431 (1985). 48 P. N. Segrè, R. W. Gammon, J. V. Sengers, and B. M. Law, Phys. Rev. A 45, 714 (1992). 49 I. Pagonabarraga, J. M. Rubí, and L. Torner, Physica A 173, 111 (1991). 50 G. Nicolis, A. Amellal, G. Dupont, and M. Mareschal, J. Mol. Liq. 41, 5 (1989). 51W. B. Li, P. N. Segrè, R. W. Gammon, and J. V. Sengers, Physica A 204, 399 (1994).
dspace.entity.typePublication
relation.isAuthorOfPublicationd2b809b1-3ba2-407e-add2-8b8251e306ba
relation.isAuthorOfPublication.latestForDiscoveryd2b809b1-3ba2-407e-add2-8b8251e306ba

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Ortiz20libre.pdf
Size:
417.44 KB
Format:
Adobe Portable Document Format

Collections