Entropy production in the early-cosmology pionic phase

Thumbnail Image
Full text at PDC
Publication Date
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
World scientific publ co pte LTD
Google Scholar
Research Projects
Organizational Units
Journal Issue
We point out that in the early universe, for temperatures in the approximate interval 150-80 MeV (after the quark-gluon plasma), pions carried a large share of the entropy and supported the largest inhomogeneities. Its thermal conductivity (previously calculated) allows the characterization of entropy production due to equilibration (damping) of thermal fluctuations. Simple model distributions of thermal fluctuations are considered and the associated entropy production evaluated.
© World scientific publ co pte LTD. We thank Antonio Maroto for a critical reading of the cosmology aspects of the work. Supported by the Spanish Excellence Network on Hadronic Physics FIS2014-57026-REDT, and by grants UCM:910309, MINECO:FPA2011-27853-C02-01, MINECO:FPA2014- 53375-C2-1-P and CPAN Consolider-Ingenio 2010. DRF was partially supported by a GRUPIN 14-108 research grant from Principado de Asturias.
Unesco subjects
1. J. Rafelski and J. Birrell, J. Phys. Conf. Ser. 509, 012014 (2014). 2. J. Rafelski and J. Birrell, arXiv:1404.6005. 3. J. Rafelski, Nucl. Phys. B (Proc. Suppl.) 243-244, 155 (2013). 4. J. Birrell, C.-T. Yang and J. Rafelski, arXiv:1406.1759. 5. A. Faessler et al., EPJ Web Conf. 71, 00044 (2014). 6. J. Rafelski, Eur. Phys. J. A 51, 114 (2015). 7. N. Brambilla et al., Eur. Phys. J. C 74, 2981 (2014). 8. J. M. Torres-Rincon, Hadronic transport coefficients from effective field theories, Dissertation presented to the University of Madrid (Complutense) available as a Springer thesis 2013, doi: 10.1007/978-3-319-00425-9, arXiv:1205.0782. 9. A. Dobado, F. J. Llanes-Estrada and J. M. Torres Rincon, Proc. IVth Int. Conf. on Quarks and Nuclear Physics, Madrid, 2006, arXiv:hep-ph/0702130. 10. A. Dobado and F. J. Llanes-Estrada, Phys. Rev. D 69, 116004 (2004). 11. L. M. Abreu et al., Ann. Phys. 326, 2737 (2011). 12. D. Cabrera et al., J. Phys. Conf. Ser. 503, 012017 (2014). 13. D. Fernandez-Fraile and A. Gomez Nicola, Phys. Rev. D 73, 045025 (2006). 14. D. Davesne, Phys. Rev. C 53, 3069 (1996). 15. M. Prakash, M. Prakash, R. Venugopalan and G. M. Welke, Phys. Rev. Lett. 70, 1228 (1993). 16. S. Mitra and S. Sarkar, Phys. Rev. D 89, 054013 (2014). 17. I. Kuznetsova and J. Rafelski, Phys. Rev. C 82, 035203 (2010), arXiv:1002.0375. 18. I. Kuznetsova, D. Habs and J. Rafelski, Phys. Rev. D 78, 014027 (2008). 19. F. S. Labini, Class. Quantum Grav. 28, 164003 (2011). 20. ALICE Collab. ( B. B. Abelev et al.), Phys. Lett. B 728, 25 (2014). 21. Planck Collab. (P. A. R. Ade et al.), Planck 2015 results, XIII: Cosmological parameters, arXiv:1502.01589[astro-ph.CO]. 22. Planck Collab. (P. A. R. Ade et al.), Planck 2015 results, XX: Constraints on inflation. 23. Particle Data Group ( J. Beringer et al.), Phys. Rev. D 86, 010001 (2012). 24. S. Burles, K. M. Nollett and M. S. Turner, Astrophys. J. 552, L1 (2001). 25. S. Weinberg, Cosmology, 1st edn. (Oxford University Press, 2008). 26. G. Lebon, D. Jou and J. Casas-Vázquez, Understanding Nonequilibrium Thermodynamics, 1st edn. (Springer-Verlag, Berlin, 2008), see Eq. (2.47). 27. E. Milotti, Invited paper at the 2ndo. Encuentro del Grupo Latinoamericano de Emision Acustica y 1ro. Iberoamericano, E-GLEA-2, Buenos Aires (Argentina), 11–14 September 2001, arXiv:physics/0204033.