Solar desalination by membrane distillation: Dispersion in energy consumption analysis and water production costs (a review)

Thumbnail Image
Full text at PDC
Publication Date
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
Elsevier Science Bv
Google Scholar
Research Projects
Organizational Units
Journal Issue
The non-isothermal membrane distillation (MD) separation process is known for about 50 years and very few studies are reported on its economics, energy analysis and costs evaluations. Dispersed and confusing water production costs (WPC) and specific energy consumption (EC) analysis were reported. Most of them are simulated and others are based on various costs assumptions. At present, the common asked questions about the published papers in MD including EC and WPC are: how these reported calculations on WPC and EC were made?, what is the current WPC of MD?, and how WPC of MD can be improved?. An overview of most studies carried out on these issues is presented and some useful equations and information in this context are reported. Comparison to other separation processes used in desalination is made. At present, the main challenge for large-scale MD is EC and WPC. New directions on MD should be raised. More rigorous investigations and focused directions on economical analysis of MD systems should be conducted. A unified standard method for analysis and calculations should be followed to determine WPC. For the benefit of MD process, one should be cautious when reporting simulated, non-realistic and non-contrasted WPC.
© 2012 Elsevier B.V. The author wishes to thank the support from the University Complutense of Madrid, UCM-BSCH (Projects GR58/08 and GR35/10-A, UCM group 910336).
UCM subjects
Unesco subjects
[1] Y. Zhou, R.S.J. Tol, Evaluating the costs of desalination and water transport, Water Resour. Res. 41 (W03003) (2005) 1–10. [2] M.A. Shannon, P.W. Bohn, M. Elimelech, J.G. Georgiadis, B.J. Mariñas, A.M. Mayes, Science and technology for water purification in the coming decades, Nature 452 (2008) 301–310. [3] K.S. Spiegler, Y.M. El-Sayed, The energetics of desalination processes, Desalination 134 (2001) 109–128. [4] M. Elimelech, W.A. Philip, The future of seawater desalination: energy, technology, and the environment, Science 333 (2011) 712–717. [5] L.F. Greenlee, D.F. Lawler, B.D. Freeman, B. Marrot, P. Moulin, Reverse osmosis desalination: water sources, technology, and today´s challenges: a review, Water Res. 43 (2009) 2317–2348. [6] M. Khayet, Membranes and theoretical modeling of membrane distillation: a review, Adv. Colloid Interface Sci. 164 (2011) 56–88. [7] M. Khayet, T. Matsuura, Membrane Distillation: Principles and Applications, 1st Edition Elsevier, Amsterdam, The Netherlands, 2011. [8] L. Carlsson, The new generation in seawater desalination SU membrane distillation system, Desalination 45 (1983) 221–222. [9] A.G. Fane, R.W. Schofield, C.J.D. Fell, The efficient use of energy in membrane distillation, Desalination 64 (1987) 231–243. [10] P.A. Hogan, Sudjito, A.G. Fane, G.L. Morrison, Desalination by solar heated membrane distillation, Desalination 81 (1991) 81–90. [11] G.C. Sarti, C. Gostoli, S. Bandini, Extraction of organic compounds from aqueous streams by vacuum membrane distillation, J. Membr. Sci. 80 (1993) 21–23. [12] E. Drioli, F. Laganá, A. Criscuoli, G. Barbieri, Integrated membrane operations in desalination process, Desalination 122 (1999) 141–145. [13] G. Zakrzewska-Trznadel, M. Harasimowicz, A.G. Chmielewski, Concentration of radioactive components in liquid low-level radioactive waste by membrane distillation, J. Membr. Sci. 163 (1999) 257–264. [14] A. Criscuoli, E. Drioli, Energetic and exergetic analysis of an integrated membrane desalination system, Desalination 124 (1999) 243–249. [15] C. Cabassud, D. Wirth, Membrane distillation for water desalination: how to choose an appropriate membrane? Desalination 157 (2003) 307–314. [16] J. Koschikowski, M. Wieghaus, M. Rommel, Solar Thermal-driven desalination plants based on membrane distillation, Desalination 156 (2003) 295–304. [17] S. Bouguecha, B. Hamrouni, M. Dhahbi, Small scale desalination pilots powered by renewable energy sources: case studies, Desalination 183 (2005) 151–165. [18] M. Khayet, J.I. Mengual, G. Zakrzewska-Trznadel, Direct contact membrane distillation for nuclear desalination. Part. II. Experiments with radioactive solutions, Int. J. Nucl. Desalination 2 (2006) 56–73. [19] J.H. Hanemaaijer, J. van Medevoort, A.E. Jansen, C. Dotremont, E. van Sonsbeek, T. Yuan, L. De Ryck, Memstillmembrane distillation- a future desalination technology, Desalination 199 (2006) 175–176. [20] G.W. Meindersma, C.M. Guijt, A.B. de Haan, Desalination and water recycling by air gap membrane distillation, Desalination 187 (2006) 291–301. [21] L. Gazagnes, S. Cerneaux, M. Persin, E. Prouzet, A. Larbot, Desalination of sodium chloride and seawater with hydrophobic ceramic membranes, Desalination 217 (2007) 260–266. [22] F. Macedonio, E. Curcio, E. Drioli, Integrated membrane systems for seawater desalination: energetic and exergetic analysis, economic evaluation, experimental study, Desalination 203 (2007) 260–276. [23] E. El-Zanati, K.M. El-Khatib, Integrated membrane-based desalination system, Desalination 205 (2007) 15–25. [24] J. Gilron, L. Song, K.K. Sirkar, Design for cascade of crossflow direct contact membrane distillation, Ind. Eng. Chem. Res. 46 (8) (2007) 2324–2334. [25] F. Banat, N. Jwaied, M. Rommel, J. Koschikowski, M. Weighaus, Desalination by a “compact SMADES” autonomous solar-powered membrane distillation unit, Desalination 217 (2007) 29–37. [26] F. Banat, N. Jwaied, M. Rommel, J. Koschikowski, M. Weighaus, Performance evaluation of the “large SMADES” autonomous desalination solar-driven membrane distillation plant in Aqaba, Jordan, Desalination 217 (2007) 17–28. [27] H.E.S. Fath, S.M. Elsherbiny, A.A. Hassan, M. Rommel, M.Wieghaus, J. Koschikowski, M. Vatansever, PV and thermally driven small-scale, stand-alone solar desalination systems with very low maintenance needs, Desalination 225 (2008) 58–69. [28] A.M. Alklaibi, The potential of membrane distillation as a stand alone desalination process, Desalination 223 (2008) 375–385. [29] F. Banat, N. Jwaied, Economic evaluation of desalination by small-scale autonomous solar-powered membrane distillation units, Desalination 220 (2008) 566–573. [30] S. Al-Obaidani, E. Curcio, F. Macedonio, G.D. Profio, H. Al-Hinai, E. Drioli, Potential of membrane distillation in seawater desalination: thermal efficiency, sensitivity study and cost estimation, J. Membr. Sci. 323 (2008) 85–98. [31] A. Criscuoli, M.C. Carnevale, E. Drioli, Evaluation of energy requirements in membrane distillation, Chem. Eng. Process. 47 (2008) 1098–1105. [32] J. Wang, B. Fan, Z. Luan, D. Qu, X. Peng, D. Hou, Integration of direct contact membrane distillation and recirculating cooling water system for pure water production, J. Cleaner Prod. 16 (2008) 1847–1855. [33] J. Koschikowski, M. Wieghaus, M. Rommel, V.S. Ortin, B.P. Suarez, J.R.B. Rodríguez, Experimental investigations on solar driven stand-alone membrane distillation systems for remote areas, Desalination 248 (2009) 125–131. [34] X. Wang, L. Zhang, H. Yang, H. Chen, Feasibility research of potable water production via solar-heated hollow fiber membrane distillation system, Desalination 247 (2009) 403–411. [35] V.A. Bui, L.T.T. Vu, M.H. Nguyen, Simulation and optimisation of direct contact membrane distillation for energy efficiency, Desalination 259 (2010) 29–37. [36] G. Zuo, R. Wang, R. Field, A.G. Fane, Energy efficiency evaluation and economic analyses of direct contact membrane distillation system using Aspen Plus, Desalination 283 (2011) 237–244. [37] D. Winter, J. Koschikowski, M.Wieghaus, Desalination using membrane distillation: experimental studies on full scale spiral wound modules, J. Membr. Sci. 375 (2011) 104–112. [38] A. Alkhudhiri, N. Darwish, N. Hilal,Membrane distillation: a comprehensive review, Desalination 287 (2012) 2–18. [39] A.M. Alklaibi, The potential of membrane distillation as a stand alone desalination process, Desalination 223 (2008) 375–385. [40] M.R. Qtaishat, T. Matsuura, B. Kruczek, M. Khayet, Heat and mass transfer analysis in direct contact membrane distillation, Desalination 219 (2008) 272–292. [41] L. Martínez Díez, M.I. Vázquez González, A method to evaluate coefficients affecting flux in membrane distillation, J. Membr. Sci. 173 (2000) 225–234. [42] M.R. Qtaishat, F. Banat, Desalination by solar powered membrane distillation systems, Desalination, in press, (online February 24 2012). [43] Z. Ding, L. Liu, M.S. El-Bourawi, R. Ma, Analysis of a solar-powered membrane distillation system, Desalination 172 (2005) 27–40. [44] K. Zhao, Y. Singh, H.Win, G. Van Gendt,W. Heinzl, R.Wang, Effect of oil/surfactant on MD process and performance study of novel modular vacuum-multi-effectmembrane-distillation (V-MEM) system, In: InternationalWorkshop on Membrane Distillation and Related Technologies, Ravello (Italy), 2011, pp. 210–212. [45] H. Lee, F. He, L. Song, J. Gilron, K.K. Sirkar, Desalination with a cascade of cross-flow hollow fiber membrane distillation devices integrated with a heat exchanger, AICHE J. 57 (2011) 1780–1795. [46] M.A. Eltawil, Z. Zhengming, L. Yuan, A review of renewable energy technologies integrated with desalination systems, Renew. Sustain. Energy Rev. 13 (2009) 2245–2262. [47] M.C. de Andrés, J. Doria, M. Khayet, L. Peña, J.I. Mengual, Coupling of a membrane distillation module to a multieffect distiller for pure water production, Desalination 115 (1998) 71–81. [48] R.G. Raluy, R. Schwantes, V.J. Subiela, B. Peñate, G. Melián, J.R. Betancort, Operational experience of a solar membrane distillation demonstration plant in Pozo Izquierdo-Gran Canaria Island (Spain), Desalination 290 (2012) 1–13. [49] E.K. Summers, H.A. Arafat, J.H. Lienhard V, Energy efficiency comparison of single-stage membrane distillation (MD) desalination cycles in different configurations, Desalination 290 (2012) 54–66. [50] L. Song, B. Li, K.K. Sirkar, J.L. Gilron, Direct contact membrane distillation-based desalination: novel membranes, devices, larger-scale studies, and a model, Ind. Eng. Chem. Res. 46 (8) (2007) 2307–2323. [51] F. Banat, N. Jwaied, Exergy analysis of desalination by solar-powered membrane distillation units, Desalination 230 (2008) 27–40. [52] M. Khayet, M. Essalhi, C. Armenta Déu, C. Cojocaru, N. Hilal, Optimization of solar-powered reverse osmosis desalination pilot plant using response surface methodology, Desalination 261 (2010) 284–292. [53] R.V. Wahlgren, Atmospheric water vapor processor designs for potable water production: a review, Water Res. 35 (2001) 1–22. [54] M.A. Darwish, N.M. Al-Najem, Energy consumption by multi-stage flash and reverse osmosis desalters, Appl. Therm. Eng. 20 (2000) 399–416. [55] F. Al-juwayhel, H. El-Dessouky, H. Ettouney, Analysis of single-effect evaporator desalination Systems combined with vapor compression heat pumps, Desalination 114 (1997) 253–275. [56] S.E. Aly, Gas turbine total energy vapour system compression desalination system, Energy Convers. Manage. 40 (1999) 729–741. [57] J.M. Veza, Mechanical vapour compression desalination plants—A case study, Desalination 101 (1995) 1–10. [58] J.E. Miller, Review of water resources and desalination technologies, In: Sand Report, Sand 2003–0800, Albuquerque, March 2003, [59] M. Wilf, K. Klinko, Optimization of seawater RO systems design, Desalination 138 (2001) 299–306. [60] P. Glueckstern, A. Thoma, M. Priel, The impact of R&D on new technologies, novel design concepts and advanced operating procedures on the cost of water desalination, Desalination 139 (2001) 217–228. [61] R. Rautenbach, V. Vobenkaul, Pressure driven membrane processes—the answer to the need of a growing world population for quality water supply and waste water disposal, Sep. Purif. Technol. 22–23 (2001) 193–208. [62] A.K. Rajvanshi, Large scale dew collection as a source of fresh water supply, Desalination 36 (1981) 299–306. [63] B.V. Bruggen, C. Vandecasteele, Distillation vs. membrane filtration: overview of process evolutions in seawater desalination, Desalination 143 (2002) 207–218. [64] A. Kullab, A. Martin, Membrane distillation and applications for water purification in thermal cogeneration plants, Sep. Purif. Technol. 76 (2011) 231–237. [65] R.K. Suri, A.M.R. Al-Marafie, A.A. Al-Homoud, G.P. Maheshwari, Cost-effectiveness of solar water production, Desalination 71 (1989) 165–175. [66] G. Ahmad, J. Schmid, Feasibility study of brackish water desalination in the Egyptian deserts and rural regions using PV systems, Ener. Conver. Manag. 43 (2002) 2641–2649. [67] G. Fiorenza, V.K. Sharma, G. Braccio, Techno-economic evaluation of a solar powered water desalination plant, Ener. Conserv. Manag. 44 (2003) 2217–2240. [68] A. Khater, S. Dannish, M. Al-Ansari, Privatization as a financing alternative for desalination plants in Bahrain, Desalination 97 (1994) 281–290. [69] J. Ayoub, R. Alward, Water requirements and remote arid areas: the need for small-scale desalination, Desalination 107 (1996) 131–147. [70] E.E. Delyannis, A. Delyannis, Economics of solar stills, Desalination 52 (1985) 167–176. [71] J. Kulhanek, T. Onishi, A. Nii, B. Milow, E. Zarza, Advanced MED solar desalination plants configurations, costs, future-seven years experience at the Plataforma Solar de Almeria (Spain), Desalination 108 (1997) 51–58. [72] A. El-Nashar, M. Samad, The solar desalination plant in Abu Dhabi: 13 years of performance and operating history, Renewable Ener. 14 (1998) 236–274. [73] P. Glueckstern, Potential uses of solar energy for seawater desalination, Desalination 101 (1995) 11–20. [74] R. Semiat, Desalination: present and future, Water Int. 25 (2000) 54–65. [75] Z. Zimerman, Development of large capacity high efficiency mechanical vapor compression (MVC) units, Desalination 96 (1994) 51–58. [76] V. Dvornikov, Seawater multi-effect distillation energized by a combustion turbine, Desalination 127 (2000) 261–269. [77] Y.M. El-Sayed, Thermoeconomics of some options of large mechanical vaporcompresion, Desalination 125 (1999) 251–257. [78] J.A. Redondo, Brackish-, sea-and wastewater desalination, Desalination 138 (2001) 29–40.