Optical coherenscopy based on phase-space tomography

Thumbnail Image
Full text at PDC
Publication Date
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
The Optical Society Of America
Google Scholar
Research Projects
Organizational Units
Journal Issue
Partially coherent light provides attractive benefits in imaging, beam shaping, free-space communications, random medium monitoring, among other applications. However, the experimental characterization of the spatial coherence is a difficult problem involving second-order statistics represented by four-dimensional functions that cannot be directly measured and analyzed. In addition, real-world applications usually require quantitative characterization of the local spatial coherence of a beam in the absence of a priori information, together with fast acquisition and processing of the experimental data. Here we propose and experimentally demonstrate a technique that solves this problem. It comprises an optical setup developed for automatized video-rate measurement and a method -phase-space tomographic coherenscopy-allowing parallel data acquisition, processing, and analysis. This technique significantly simplifies the spatial coherence analysis and opens up new perspectives for the development of tools exploiting the degrees of freedom hidden into light coherence.
© 2013 Optical Society of America. The Spanish Ministerio de Economía y Competitividad is acknowledged for the project TEC2011-23629. A. Cámara thanks the financial support from the Consejería de Educación de la Comunidad de Madrid and the European Social Fund.
1. J. W. Goodman, Statistical Optics (Wiley-Interscience, 2000). 2. M. Born and E. Wolf, Principles of Optics (Cambridge University Press, 2006). 3. G. Gbur and T. D. Visser, “The structure of partially coherent fields,” in Progress in Optics (Elsevier, 2010), 55, 285–341. 4. A. A. Michelson and F. G. Pease, “Measurement of the diameter of Alpha-Orionis by the interferometer,” Astrophys. J. 53, 249–259 (1921). 5. Y. Cai and S.-Y. Zhu, “Ghost imaging with incoherent and partially coherent light radiation,” Phys. Rev. E 71, 056607 (2005). 6. B. I. Erkmen and J. H. Shapiro, “Ghost imaging: from quantum to classical to computational,” Adv. Opt. Photon. 2, 405–450 (2010). 7. F. Dubois, L. Joannes, and J.-C. Legros, “Improved three-dimensional imaging with a digital holography microscope with a source of partial spatial coherence,” Appl. Opt. 38, 7085–7094 (1999). 8. P. Kolman and R. Chmelík, “Coherence-controlled holographic microscope,” Opt. Express 18, 21990–22003 (2010). 9. X. Ma and G. R. Arce, “PSM design for inverse lithography with partially coherent illumination,” Opt. Express 16, 20126–20141 (2008). 10. X. Ma and G. Arce, Computational Lithography, Wiley Series in Pure and Applied Optics (Wiley, 2011). 11. T. Shirai, A. Dogariu, and E.Wolf, “Mode analysis of spreading of partially coherent beams propagating through atmospheric turbulence,” J. Opt. Soc. Am. A 20, 1094–1102 (2003). 12. P. Michel, C. Labaune, H. C. Bandulet, K. Lewis, S. Depierreux, S. Hulin, G. Bonnaud, V. T. Tikhonchuk, S. Weber, G. Riazuelo, H. A. Baldis, and A. Michard, “Strong reduction of the degree of spatial coherence of a laser beam propagating through a preformed plasma,” Phys. Rev. Lett. 92, 175001 (2004). 13. J.Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E.Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nature Photon. 6, 488–496 (2012). 14. Z. Zalevsky, D. Medlovic, and H. M. Ozaktas, “Energetic efficient synthesis of general mutual intensity distribution,” J. Opt. A 2, 83–87 (2000). 15. M. J. Bastiaans, “The Wigner distribution function of partially coherent light,” Opt. Acta 28, 1215–1224 (1981). 16. M. Alonso, “Wigner functions in optics: describing beams as ray bundles and pulses as particle ensembles,” Adv. Opt. Photon. 3, 272–365 (2011). 17. G. S. Agarwal and R. Simon, “Reconstruction of the Wigner transform of a rotationally symmetric twodimensional beam from the Wigner transform of the beam’s one-dimensional sample,” Opt. Lett. 17 [17], 1379– 1381. 18. T. Alieva and F. Agullo-López, “Reconstruction of the optical correlation function in a quadratic refractive index medium,” Opt. Commun. 114, 161–169 (1995). 19. C. Q. Tran and K. A. Nugent, “Recovering the complete coherence function of a generalized Schell model field,” Opt. Lett. 31, 3226–3227 (2006). 20. T. E. Gureyev, A. Roberts, and K. A. Nugent, “Partially coherent fields, the transport-of-intensity equation, and phase uniqueness,” J. Opt. Soc. Am. A 12, 1942–1946 (1995). 21. A. Cámara, T. Alieva, J. A. Rodrigo, and M. L. Calvo, “Phase space tomography reconstruction of the Wigner distribution for optical beams separable in Cartesian coordinates,” J. Opt. Soc. Am. A 26, 1301–1306 (2009). 22. K. A. Nugent, “Partially coherent diffraction patterns and coherence measurement,” J. Opt. Soc. Am. A 8, 1574– 1579 (1991). 23. M. Santarsiero and R. Borghi, “Measuring spatial coherence by using a reversed-wavefront Young interferometer,” Opt. Lett. 31, 861–863 (2006). 24. A. I. González and Y. Mejía, “Nonredundant array of apertures to measure the spatial coherence in two dimensions with only one interferogram,” J. Opt. Soc. Am. A 28, 1107–1113 (2011). 25. L. Waller, G. Situ, and J. W. Fleischer, “Phase-space measurement and coherence synthesis of optical beams,” Nature Photon. 6, 474–479 (2012). 26. M. G. Raymer, M. Beck, and D. F. McAlister, “Complex wave-field reconstruction using phase-space tomography,” Phys. Rev. Lett. 72, 1137–1140 (1994). 27. A. Cámara, T. Alieva, J. A. Rodrigo, and M. L. Calvo, “Tomographic reconstruction of the Wigner distribution of non-separable beams,” in PIERS Proceedings (2010), 526–530. 28. D. Mendlovic, R. G. Dorsch, A. W. Lohmann, Z. Zalevsky, and C. Ferreira, “Optical illustration of a varied fractional Fourier-transform order and the Radon—Wigner display,” Appl. Opt. 35, 3925–3929 (1996). 29. Y. Zhang, B.-Y. Gu, B.-Z. Dong, and G.-Z. Yang, “Optical implementations of the Radon–Wigner display for one-dimensional signals,” Opt. Lett. 23, 1126–1128 (1998). 30. A. Cámara, T. Alieva, J. A. Rodrigo, and M. L. Calvo, “Phase-space tomography with a programmable Radon– Wigner display,” Opt. Lett. 36, 2441–2443 (2011). 31. J. Radon, “On the determination of functions from their integral values along certain manifolds,” IEEE Trans. Med. Imag. 5, 170–176 (1986). 32. J. A. Rodrigo, T. Alieva, and M. J. Bastiaans, Optical and Digital Image Processing (Wiley-VCH Verlag, 2011), chap. 12. 33. J. A. Rodrigo, T. Alieva, and M. L. Calvo, “Programmable two-dimensional optical fractional Fourier processor,” Opt. Express 17, 4976–4983 (2009). 34. J. A. Rodrigo, T. Alieva, A. Cámara, Ó. Martínez- Matos, P. Cheben, and M. L. Calvo, “Characterization of holographically generated beams via phase retrieval based on Wigner distribution projections,” Opt. Express 19, 6064–6077 (2011). 35. X. Liu and K. H. Brenner, “Reconstruction of two-dimensional complex amplitudes from intensity measurements,” Opt. Commun. 225, 19–30 (2003). 36. E. Wolf, “New theory of partial coherence in the space-frequency domain. Part I: spectra and cross spectra of steady-state sources,” J. Opt. Soc. Am. 72, 343–351 (1982). 37. F. Gori, M. Santarsiero, R. Borghi, and G. Guattari, “Intensity-based modal analysis of partially coherent beams with Hermite–Gaussian modes,” Opt. Lett. 23, 989–991 (1998). 38. E. Tervonen, J. Turunen, and A. T. Friberg, “Transverse laser-mode structure determination from spatial coherence measurements: Experimental results,” Appl. Phys. B 49, 409–414 (1989). 39. J. C. Ricklin and F. M. Davidson, “Atmospheric turbulence effects on a partially coherent Gaussian beam: implications for free-space laser communication,” J. Opt. Soc. Am. A 19, 1794–1802 (2002). 40. Y. Yuan, Y. Cai, J. Qu, H. T. Eyyubo˘glu, Y. Baykal, and O. Korotkova, “M2-factor of coherent and partially coherent dark hollow beams propagating in turbulent atmosphere,” Opt. Express 17, 17344–17356 (2009). 41. “Adaptive optics kits, tabletop deformable mirrors and more,” Nature Photon. 5, 27–27 (2011). 42. M. Bastiaans, “Transport equations for the Wigner distribution function in an inhomogeneous and dispersive medium,” Opt. Acta 26, 1333–1344 (1979). 43. J. W. Goodman, Introduction to Fourier Optics (Roberts & Company, Colorado, USA, 2005).