Nonlinear relativistic single-electron Thomson scattering power spectrum for incoming laser of arbitrary intensity

Thumbnail Image
Full text at PDC
Publication Date
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
American Institute of Physics
Google Scholar
Research Projects
Organizational Units
Journal Issue
The classical nonlinear incoherent Thomson scattering power spectrum from a single relativistic electron with incoming laser radiation of any intensity, investigated numerically by the present authors in a previous publication, displayed both an approximate quadratic behavior in frequency and a redshift of the power spectrum for high intensity incoming radiation. The present work is devoted to justify, in a more general setup, those numerical findings. Those justifications are reinforced by extending suitably analytical approaches, as developed by other authors. Moreover, our analytical treatment exhibits differences between the Doppler-like frequencies for linear and circular polarization of the incoming radiation. Those differences depend nonlinearly on the laser intensity and on the electron initial velocity and do not appear to have been displayed by previous authors. Those Doppler-like frequencies and their differences are validated by new Monte Carlo computations beyond our previuos ones and reported here.
© 2012 American Institute of Physics. R. F. Alvarez-Estrada acknowledges Ministerio de Ciencia e Innovacion, Spain, for financial support under Project FIS2008-01323. F. Castejon and I. Pastor also acknowledge Ministerio de Ciencia e Innovacion, Spain, for financial support under Projects ENE2008-06082/FTN and ENE2009-10181, respectively. R. F. Alvarez-Estrada and F. Castejon are associate members of Instituto de Biocomputacion y Fisica de los Sistemas Complejos, Universidad de Zaragoza, Zaragoza, Spain.
Unesco subjects
1 D. H. Froula, S. H. Glenzer, N. C. Luhmann, Jr., and J. Sheffield, Plasma Scattering of Electromagnetic Radiation: Theory and Measurement Techniques (Academic, Elsevier, Amsterdam, 2011). 2 I. Hutchison, Principles of Plasma Diagnostics (Cambridge University Press, Cambridge, 2005). 3 D. E. Evans and J. Katzenstein, Rep. Prog. Phys. 32, 207 (1969). 4 M. Mattioli, “Incoherent Light Scattering from High Temperature Plasmas,” Report DPh-PFC-SPP, (EUR-CEA-FC) 752, 1974. 5 T. Matoba, T. Itagaki, T. Yamauchi, and A. Funahashi, Jpn. J. Appl. Phys., Part 118, 1127 (1979). 6 B. Weyssow, J. Plasma Phys. 43, 119 (1990). 7 O. Naito, H. Yoshida, and T. Matoba, Phys. Fluids B 5, 4256 (1993). 8 K. V. Beausang and S. L. Prunty, Plasma Phys. Controlled Fusion 50, 095001 (2008). 9 M. J. Walsh, Rev. Sci. Instrum. 77, 10E525 (2006). 10 J. S. Ross, S. H. Glenzer, J. P. Palastro, B. B. Pollock, D. Price, L. Divol, G. R. Tynan, and D. H. Froula, Phys. Rev. Lett. 104, 105001 (2010). 11 J. P. Palastro, J. S. Ross, B. Pollock, L. Divol, D. H. Froula, and S. H. Glenzer, Phys. Rev. E 81, 036411 (2010). 12 L. D. Landau and E. M. Lifchitz, The Classical Theory of Fields, 4th ed. (Pergamon, New York, 1975). 13 E. S. Sarachik and G. T. Schappert, Phys. Rev. D 1, 2738 (1970). 14 E. Essarey, S. K. Ride, and P. Sprangle, Phys. Rev. E 48, 3003 (1993). 15 S. K. Ride, E. Essarey, and M. Baine, Phys. Rev. E 52, 5425 (1995). 16 C. A. Brau, Modern Problems in Classical Electrodynamics (Oxford University Press, Oxford, 2004). 17 H. K. Avetissian, Relativistic Nonlinear Electrodynamics, Springer Series in Optical Sciences (Springer, New York, 2006). 18 J.-H. Yang, R. S. Craxton, and M. G. Haines, Plasma Phys. Controlled Fusion 53, 125006 (2011). 19 W. K. H. Panofsky and M. Phillips, Classical Electricity and Magnetism (Addison-Wesley, Reading, MA, 1955). 20 I. Pastor, J. Guasp, R. F. Alvarez-Estrada, and F. Castejon, Nucl. Fusion 51, 043011 (2011). 21 J. D. Jackson, Classical Electrodynamics, 2nd ed. (Wiley, New York, 1974). 22 R. F. Álvarez-Estrada and E. R. Martínez, An. Fis. 77, 110 (1981). 23 P. J. Duke, Synchrotron Radiation: Production and Properties, Oxford Science Publications (Oxford University Press, Oxford, 2000). 24 F. W. J. Olver, “Bessel functions of integer order,” in Handbook of Mathematical Functions, edited by M. Abramowitz and I. A. Stegun (Dover, New York, 1965). 25 E. Loetstedt and U. D. Jentschura, Phys. Rev. E 79, 026707 (2009).