Decoherence and quantum quench: their relationship with excited state quantum phase transitions

Thumbnail Image
Full text at PDC
Publication Date
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
American Institute of Physics (AIP)
Google Scholar
Research Projects
Organizational Units
Journal Issue
We study the similarities and differences between the phenomena of Quantum Decoherence and Quantum Quench in presence of an Excited State Quantum Phase Transition (ESQPT). We analyze, on one hand, the decoherence induced on a single qubit by the interaction with a two-level boson system with critical internal dynamics and, on the other, we treat the quantum relaxation process that follows an abrupt quench in the control parameter of the system Hamiltonian. We explore how the Quantum Decoherence and the quantum relaxation process are affected by the presence of an ESQPT. We conclude that the dynamics of the qubit or the quantum relaxation process change dramatically when the system passes through a continuous ESQPT.
© American Institute of Physics (AIP). Meeting on Beauty in Physics - Theory and Experiment in Honor of Francesco Lachello on the Occasion of his 70th Birthday (2012. Hacienda Cocoyoc, Mexico). This work is presented on the occasion of Franco Iachello’s 70th birthday. It has been partially supported by the Spanish Government (FEDER) under projects number FIS2011-28738-C02-01/02, FIS2009-07277, by Junta de Andalucía under projects FQM160, FQM318, P07-FQM-02962 and P07-FQM-02962, by the Spanish Consolider-Ingenio 2010 Programme CPAN (CSD2007-00042), and by the Czeck Ministry of Education (contract 0021620859).
Unesco subjects
1. W. H. Zurek, Rev. Mod. Phys. 75, 715 (2003). 2. M. Nielsen and I. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, UK, 2000). 3. E. Barouch and M. Dresden, Phys. Rev. Lett. 23, 114 (1969). 4. M. Greiner, O. Mandel, T. Esslinger, T. Hänsch, and I. Bloch, Nature 415, 39 (2002); M. Greiner, O. Mandel, T. Hänsch, and I. Bloch, ibid. 419, 51 (2002). 5. R. Gilmore and D.H. Feng, Nucl. Phys. A 301, 189 (1978); R. Gilmore, J. Math. Phys. 20, 891 (1979); R. Gilmore, Catastrophe Theory for Scientists and Engineers (Wiley, New York, 1981). 6. S. Sachdev, Quantum Phase Transitions (Cambridge University Press, Cambridge, 1999). 7. R.F. Casten, Prog. Part. Nucl. Phys. 62, 183 (2009); P. Cejnar and J. Jolie, ibid. 62, 210 (2009). 8. P. Cejnar, J. Jolie, and R.F. Casten, Rev. Mod. Phys., in press (2010). 9. M. A. Caprio, P. Cejnar, and F. Iachello, Ann. Phys 323, 1106 (2008). 10. P. Cejnar, S. Heinze, and M. Macek, Phys. Rev. Lett. 99, 100601 (2007). 11. H. T. Quan, Z. Song, X. F. Liu, P. Zanardi, and C. P. Sun, Phys. Rev. Lett. 96, 140604 (2006); F. M. Cucchietti, S. Fernandez-Vidal, and J. P. Paz, Phys. Rev. A 75, 032337 (2007); C. Cormick and J. P. Paz, Phys Rev. A 77, 022317 (2008). 12. A. Relaño, J.M. Arias, J. Dukelsky, J.E. García-Ramos, and P. Pérez-Fernández, Phys. Rev. A 78, 060102R (2008). 13. P. Pérez-Fernández. A. Relaño, J.M. Arias, J. Dukelsky, J.E. García-Ramos, Phys. Rev. A 80, 032111 (2009). 14. J. Vidal, J.M. Arias, J. Dukelsky, J. E. García-Ramos, Phys. Rev. C 73, 054305 (2006); J.M. Arias, J. Dukelsky, J. E. García-Ramos, and J. Vidal, Phys. Rev. C 75, 014301 (2007). 15. P. Pérez-Fernández. P. Cejnar, J.M. Arias, J. Dukelsky, J.E. García-Ramos, and A. Relaño, Phys. Rev. A 83, 033802 (2011). 16. E.T. Jaynes and F.W. Cummings, Proc. IEEE 51, 89 (1963); M. Tavis and F.W. Cummings, Phys. Rev. 170, 379 (1968). 17. R.H. Dicke, Phys. Rev. 93, 99 (1954).