A decomposition theorem for polymeasures

Thumbnail Image
Full text at PDC
Publication Date
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
Google Scholar
Research Projects
Organizational Units
Journal Issue
We prove that every countably additive polymeasure can be decomposed in a unique way as the sum of a "discrete" polymeasure plus a "continuous" polymeasure. This generalizes a previous result of Saeki.
R.G. Bartle, N. Dunford, J. Schwartz, Weak compactness and vector measures, Canad. J. Math. 7 (1955) 289–305. R.C. Blei, Multilinear measure theory and the Grothendieck factorization theorem, Proc. London Math. Soc. 56 (1988) 529–546. H.P. Boas, D. Khavinson, Bohr power series theorem in several variables, Proc. Amer. Math. Soc. 125 (1997) 2975–2979. F. Bombal, M. Fernández, I. Villanueva, Unconditionally converging multilinear operators, Math. Nachr. 226 (2001) 5–15. F. Bombal, M. Fernández, I. Villanueva, Some classes of multilinear operators on C(K) spaces, Studia Math. 148 (2001) 259–273. F. Bombal, I. Villanueva, Multilinear operators on spaces of continuous functions, Funct. Approx. Comment. Math. 26 (1998) 117–126. F. Bombal, I. Villanueva, Integral operators on the product of C(K) spaces, J. Math. Anal. Appl. 264 (2001) 107–121. A. Defant, D. García, M. Maestre, Bohr's power series theorem and local Banach space theory, J. Reine Angew. Math. 557 (2003) 173–197. A. Defant, L. Frerick, A logarithmical lower bound for multidimensional Bohr radii, Israel J. Math. 152 (2006) 17–28. J. Diestel, J.J. Uhl, Vector Measures, Math. Surveys Monogr., vol. 15, Amer. Math. Soc., Providence, RI, 1977. S. Dineen, Complex Analysis on Infinite Dimensional Spaces, Springer, 1999. MR1705327 (2001a:46043) S. Dineen, R.M. Timoney, On a problem of H. Bohr, Bull. Soc. Roy. Sci. Liège 60 (1991) 401–404. I. Dobrakov, On integration in Banach spaces, VIII (polymeasures), Czechoslovak Math. J. 37 (112) (1987) 487–506. M. Fernández Unzueta, Unconditionally convergent polynomials in Banach spaces and related properties, Extracta Math. 12 (1997) 305–307. N. Ghoussoub, W.B. Johnson, Counterexamples to several problems on the factorization of bounded linear operators, Proc. Amer. Math. Soc. 92 (1984) 233–238. J.E. Gilbert, T. Ito, B.M. Schreiber, Bimeasure algebras on locally compact groups, J. Funct. Anal. 64 (1985) 134–162. C.C. Graham, B.M. Schreiber, Bimeasure algebras on LCA groups, Pacific J. Math. 115 (1984) 91–127. A. Grothendieck, Sur les applications linéaires faiblement compactes d'espaces du type C(K) , Canad. J. Math. 5 (1956) 129–173. J. Gutiérrez, I. Villanueva, Extensions of multilinear operators and Banach space properties, Proc. Roy. Soc. Edinburgh Sect. A 133 (2003) 1–18. A. Pelczyński, On weakly compact polynomial operators on B -spaces with Dunford–Pettis property, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astr. Phys. 11 (1963) 371–378. A. Pełczyński, A theorem of Dunford–Pettis type for polynomial operators, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astr. Phys. 11 (1963) 371–378. D. Pérez-García, M.M. Wolf, C. Palazuelos, I. Villanueva, M. Junge, Unbounded violation of tripartite Bell inequalities, preprint. cf. D. Pérez-García, I. Villanueva, Orthogonally additive polynomials on spaces of continuous functions, J. Math. Anal. Appl. 306 (2005) 97–105. R.A. Ryan, Dunford–Pettis properties, Bull. Acad. Polon. Sci. Ser. Sci. Math. 27 (1979) 373–379. S. Saeki, Tensor products of C(X) -spaces and their conjugate spaces, J. Math. Soc. Japan 28 (1976) 33–47. N.Th. Varopoulos, Tensor algebras and harmonic analysis, Acta Math. 119 (1967) 51–112. I. Villanueva, Completely continuous multilinear operators on C(K) spaces, Proc. Amer. Math. Soc. 128 (1999)793–801. K. Ylinen, On vector bimeasures, Ann. Mat. Pura Appl. 117 (1978) 119–138.