Publication:
Sequentially generated states for the study of two-dimensional systems

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2008
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Physical Society
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
Matrix product states can be defined as the family of quantum states that can be sequentially generated in a one-dimensional system [Schon et al., Phys. Rev. Lett. 95, 110503 (2005)]. We introduce a family of states that extends this definition to two dimensions. Like in matrix product states, expectation values of few body observables can be efficiently evaluated and, for the case of translationally invariant systems, the correlation functions decay exponentially with the distance. We show that such states are a subclass of projected entangled pair states and investigate their suitability for approximating the ground states of local Hamiltonians.
Description
Keywords
Citation
S. R. White, Phys. Rev. Lett. 69, 2863 (1992) D. Perez-García, F. Verstraete, M. M. Wolf, and J. I. Cirac, Quantum Inf. Comput. 7, 401 (2007). G. Vidal, Phys. Rev. Lett. 91, 147902 (2003). F. Verstraete and J. I. Cirac, e-print arXiv:cond-mat/0407066. C. Schön, E. Solano, F. Verstraete, J. I. Cirac, and M. M. Wolf, Phys. Rev. Lett. 95, 110503 (2005). N. Schuch, M. M. Wolf, F. Verstraete, and J. I. Cirac, Phys. Rev. Lett. 98, 140506 (2007). V. Murg, F. Verstraete, and J. I. Cirac, Phys. Rev. A 75, 033605 (2007). J. Jordan, R. Orús, G. Vidal, F. Verstraete, and J. I. Cirac, e-print arXiv:cond-mat/0703788v3. G. Vidal, Phys. Rev. Lett. 99, 220405 (2007). S. Anders, M. B. Plenio, W. Dür, F. Verstraete, and H.-J. Briegel, Phys. Rev. Lett. 97, 107206 (2006). S. Moukouri, Phys. Rev. B 70, 014403 (2004). N. Schuch, M. M. Wolf, F. Verstraete, and J. I. Cirac, Phys. Rev. Lett. 100, 040501 (2008). C. M. Dawson, J. Eisert, and T. J. Osborne, Phys. Rev. Lett. 100, 130501 (2008). M. B. Hastings, Phys. Rev. B 76, 201102(R) (2007). U. Schollwöck, Rev. Mod. Phys. 77, 259 (2005). F. Verstraete, D. Porras, and J. I. Cirac, Phys. Rev. Lett. 93, 227205 (2004). F. Verstraete, J. J. García-Ripoll, and J. I. Cirac, Phys. Rev. Lett. 93, 207204 (2004). F. Verstraete, M. M. Wolf, D. Perez-García, and J. I. Cirac, Phys. Rev. Lett. 96, 220601 (2006). F. Verstraete and J. I. Cirac, Phys. Rev. A 70, 060302(R) (2004). D. Pérez-García, F. Verstraete, J. I. Cirac, and M. M. Wolf, e-print arXiv:0707.2260v1. H. J. Briegel and R. Raussendorf, Phys. Rev. Lett. 86, 910 (2001). The scaling depends exponentially on the number of local operators applied, so that the calculation is feasible as long as this number is small. V. Murg (private communication). MPSs have bond dimension D, and unitaries act on M+1 sites, so that dM=D. G. Vidal, J. I. Latorre, E. Rico, and A. Kitaev, Phys. Rev. Lett. 90, 227902 (2003). M. B. Hastings, Phys. Rev. B 73, 085115 (2006). M. B. Hastings, Phys. Rev. B 76, 035114 (2007). J. Eisert, Phys. Rev. Lett. 97, 260501 (2006). A. Y. Kitaev, Ann. Phys. 303, 2 (2003).
Collections