Decoherence induced by an interacting spin environment in the transition from integrability to chaos

Thumbnail Image
Full text at PDC
Publication Date
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
American Physical Society
Google Scholar
Research Projects
Organizational Units
Journal Issue
We investigate the decoherence properties of a central system composed of two spins 1/2 in contact with a spin bath. The dynamical regime of the bath ranges from a fully integrable limit to complete chaoticity. We show that the dynamical regime of the bath determines the efficiency of the decoherence process. For perturbative regimes, the integrable limit provides stronger decoherence, while in the strong coupling regime the chaotic limit becomes more efficient. We also show that the decoherence time behaves in a similar way. On the contrary, the rate of decay of magnitudes like linear entropy or fidelity does not depend on the dynamical regime of the bath. We interpret the latter results as due to a comparable complexity of the Hamiltonian for both the integrable and the fully chaotic limits.
©2007 The American Physical Society. This work was supported by grants FIS2006-12783-C03-01 from Ministerio de Educación y Ciencia of Spain, and 200650M012 from Comunidad de Madrid and CSIC. A.R. is supported by the Spanish program “Juan de la Cierva”. R.A.M. is supported by the I3P program funded by the European Social Fund.
UCM subjects
Unesco subjects
[1] W. H. Zurek, Rev. Mod. Phys. 75, 715 (2003). [2] M. Nielsen and I. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, UK, 2000). [3] F. M. Cucchietti, D. A. R. Dalvit, J. P. Paz, and W. H. Zurek, Phys. Rev. Lett. 91, 210403 (2003). [4] W. H. Zurek and J. P. Paz, Phys. Rev. Lett. 72, 2508 (1994); P. A. Miller and S. Sarkar, Phys. Rev. E 58, 4217 (1998); 60, 1542 (1999); A. K. Pattanayak, Phys. Rev. Lett. 83, 4526 (1999); D. Monteoliva and J. P. Paz, ibid. 85, 3373 (2000); Phys. Rev. E 64, 056238 (2001); R. A. Jalabert and H. M. Pastawski, Phys. Rev. Lett. 86, 2490 (2001); P. Bianucci, J. P. Paz, and M. Saraceno, Phys. Rev. E 65, 046226 (2002). [5] W. Zurek, Nature (London_)412, 712 (2001). [6] V. V. Dobrovitski and H. A. De Raedt. Phys. Rev. E 67, 056702 (2003). [7] R. Blume-Kohout and W. Zurek, Phys. Rev. A 68, 032104 (2003); F. C. Lombardo and P. I. Villar, ibid. 72, 034103 (2005). [8] L. Ermann, J. P. Paz, and M. Saraceno, Phys. Rev. A 73, 012302 (2006). [9] X.-W. Hou and B. Hu, Phys. Rev. A 69, 042110 (2004). [10] A. Tanaka, J. Phys. A 29, 5475 (1996); R. M. Angelo, K. Furuya, M. C. Nemes, and G. Q. Pellegrino, Phys. Rev. E 60, 5407 (1999). [11] T. Prosen and M. Znidaric, J. Phys. A 35, 1455 (2002). [12] J. Lages, V. V. Dobrovitski, M. I. Katsnelson, H. A. De Raedt, and B. N. Harmon, Phys. Rev. E 72, 026225 (2005). [13] M. K. Gould, Y.-Z. Zhang, and S.-Y. Zhao, Nucl. Phys. B 630, 492 (2002). [15] M. I. Katsnelson, V. V. Dobrovitski, H. A. De Raedt, and B. N. Harmon, Phys. Lett. A 318, 445 (2003). [17] S. Weigert and G. Muller, Chaos, Solitons Fractals 5, 1419 (1995). [18] A. Relaño, J. Dukelsky, J. M. G. Gómez, and J. Retamosa, Phys. Rev. E 70, 026208 (2004). [19] M. V. Berry and M. Tabor, Proc. R. Soc. London, Ser. A 356, 375 (1977). [20] O. Bohigas, M. J. Giannoni, and C. Schmit, Phys. Rev. Lett. 52, 1 (1984). [21] F. Haake, Quantum Signatures of Chaos (Springer-Verlag, Berlin, 2001). [22] A. Relaño, J. M. G. Gómez, R. A. Molina, J. Retamosa, and E. Faleiro, Phys. Rev. Lett. 89, 244102 (2002); E. Faleiro, J. M. G. Gómez, R. A. Molina, L. Muñoz, A. Relaño, and J. Retamosa, ibid. 93, 244101 (2004). [23] J. M. G. Gómez, A. Relaño, J. Retamosa, E. Faleiro, L. Salasnich, M. Vranicar, and M. Robnik, Phys. Rev. Lett. 94, 084101 (2005). [24] J. M. G. Gómez, R. A. Molina, A. Relaño, and J. Retamosa, Phys. Rev. E 66, 036209 (2002). [25] F. Marquardt, in Advances in Solid State Physics, edited by R. Haug (Springer, New York, 2006), Vol. 46.