Ion kinetic transport in TJ-II

Thumbnail Image
Full text at PDC
Publication Date
Velasco, J. L.
Castejón, F.
Tarancón, A.
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
American Institute of Physics
Google Scholar
Research Projects
Organizational Units
Journal Issue
The ion Drift Kinetic Equation (DKE) which describes the ion coUisional transport is solved for the TJ-II device plasmas. This non-linear equation is computed by peribrming a mean field iterative calculation. In each step of the calculation, a Fokker-Planck equation is solved by means of the Langevin approach: one million particles are followed in a realistic TJ-II magnetic configuration, taking into account collisions and electric field. This allows to avoid the assumptions made in the usual neoclassical approach, namely considering radially narrow particle trajectories, diffusive transport, energy conservation and infinite parallel transport. As a consequence, global features of transport, not present in the customary neoclassical models, appear: non-diffusive transport and asymmetries on the magnetic surfaces.
© 2008 American Institute of Physics. BIFI International Congress (111th. 2008. Zaragoza, Spain). We acknowledge partial financial support from MEC (Spain), through research contract FIS2006-08533-C03, European Commission through contracts EGEE-II-03I688 and 031857, and from BSCH-UCM. J.L. Velasco is a DGA (Aragón, Spain) fellow. Great accuracy has been achieved thanks to the use of the computing platform 0048257301 Zivis [27].
Unesco subjects
1. C. Alejaldre, et al, Fusion Technology, 17, 131 (1990). 2. V. Tribaldos, J. Guasp, Plasma Phys. Control. Fusion, 47, 545 (2005). 3. W. Lotz, P. Merkel, J. Nürenberg, E. Strumberger, Plasma Physics and Controlled Fusion, 34, 1037 (1992). 4. S.G. Shasharina, J.R. Cary, Nuclear Fusion, 33, 648 (1993). 5. T. Kurki-Suonio, et al, Nucl. Fusion, 42, 725 (2002). 6. T. Kiviniemi, et al, "Ripple-induced fast ion and thermal ion losses", 32nd. 2nd. EPS Plasma Phys. Conference, Tarragona, Spain, 2005. 7. T. Koskela, et al, "Alpha particle orbits in a locally perturbed ITER 3D magnetic field", in 35th. EPS Plasma Phys. Conference, Crete, Greece, 2008. 8. F. Castejón, et al., Fusion Science and Technology, 50, 412 (2006). 9. F. Castejón, et al., Plasma Phys. Control. Fusion, 49, 753 (2007). 10. S. Satake, et al., Nucl. Fusion, 45, 1362 (2005). 11. W.X. Wang, et al., Comp. Phys. Commun., 164, 178 (2004). 12. M.A. Ochando, F. Medina, Fusion Sci. Technol., 50, 313 (2006). 13. J.L. Velasco, et al., Nucl. Fusion, 48, 065008 (2008). 14. M. Yokoyama, et al., Fusion Sci. Technol., 50, 327 (2006). 15. A. Fujisawa, et al., Phys. Rev. Lett., 82, 2669 (1999). 16. H. Maassberg, et al., Phys. Plasmas, 7, 295 (2000). 17. K. Ida, et al., Phys. Rev. Lett., 86, 5297 (2001). 18. F. Castejón, et al., Nucl. Fusion, 42, 271 (2002). 19. T. Estrada, et al., Nucl. Fusion, 47, 305 (2007). 20. R.J. Goldston, P.H. Rutherford, Introduction to Plasma Physics, IOP Publishing, Bristol, 1995. 21. T.S. Chen, A General Form of the Coulomb Scattering Operators for Monte Carlo Simulations and a Note on the Guiding Center Equations in Different Magnetic Coordinate Conventions, Max-Planck-Institut für Plasmaphysik IPP 0/50, Garching, 1988. 22. A. Boozer, G. Kuo-Petravic, Plasma Physics, 24, 851 (1981). 23. M.N. Rosenbluth, W. MacDonald, D. Judd, Phys. Rev., 107, 1 (1957). 24. P.E. Kloeden, R.A. Pearson, The numerical solution of stochastic differential equations, J. Austral. Math. Soc. Ser., B20, pp.8-12, 1977. 25. J. Guasp, M. Liniers, Nuclear Fusion, 40, 397 (2000). 26. J.M. Fontdecaba, et al., Fusion Sci. Technol., 46, 271 (2004). 27. B. Antolí, et al., "ZIVIS: A City Computing Platform Based on Volunteer Computing" Spanish Conference on E-Science Grid Computing Proceedings, Madrid, 2007, pp. 153.