Unitarity Violation in non-Abelian Pauli-Villars Regularization

Thumbnail Image
Full text at PDC
Publication Date
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
Elsevier Science Bv
Google Scholar
Research Projects
Organizational Units
Journal Issue
We regularize QCD using the combination of higher covariant derivatives and Pauli-Villars determinants proposed by Slavnov. It is known that for pure Yang-Mills theory the Pauli-Villars determinants generate unphysical logarithmic radiative corrections at one loop that modify the beta function. Here we prove that when the gauge fields are coupled to fermions so that one has QCD, these unphysical corrections translate into a violation of unitarity. We provide an understanding of this by showing that Slavnov's choice for the Pauli-Villars determinants introduces extra propagating degrees of freedom that are responsible for the unitarity breaking. This shows that Slavnov's regularization violates unitarity, hence that it should be rejected.
©1995 Elsevier Science B.V. All rights reserved.
Unesco subjects
[1] G. ‘t Hooft and M. Veltman, Nucl Phys. B 44 ( 1972) 189; D.A. Akyeampong and R. Delbourgo, Nuov. Cim. A 17 (1973) 578; A 18 (1973) 94; A 19 (1974) 219. [2] A.A. Slavnov, Nucl. Phys. B 31 (1971) 301; B.W. Lee and J. Zinn-Justin, Phys. Rev. D 5 (1972) 3121. [3] C.P. Martin, Phys. Len. B 241 (1990) 513. [4] G. Giavarini, C.P Martin and E Ruiz Ruiz, Nucl. Phys. B 381 (1992) 222. [5] A.A. Slavnov, Tbeor. Math. Phys. 33 (1977) 977. [6] B.J. Warr, Ann. Phys. 183 (1988) 1. [7] R. SenCor, Some remarks for the construction of Yang Mills theories, in: Renormalization of quantum field theories with non-linear field transformations, edited by P Breitenlohner, D. Maison and K. Sibold (Springer-Verlag, Berlin 1988). [8] L.D. Faddeev and A.A. Slavnov, Gauge fields, introduction to quantum theory (Benjamin 1991). [9] C.P Martin and E Ruiz Ruiz, Nucl. Phys. B 436 (1995) 545. [l0] R. Kawabe, K.i. Aoki, Z. Hioki, M. Konuma and T. Muta, Prog. Theor. Phys. Suppl. 73 ( 1982) 1. [11] C. Itzykson and J.B. Zuber, Quantum field theory (McGraw- Hill, 1987). [12] M. Asorey and E Falceto, On the consistency Of regularization by higher covariant derivatives, University of Zaragoza preprint DlTUZ-95.3. [13] G. ‘t Hooft and M. Veltman, Diagrammar, in: Particle interactions at very high energies, edited by D. Speiser, F. Halzen and J. Weyers (Plenum Press, London, 1974). [14] C.P Martin and F. Ruiz Ruiz, Phys. Len. B 343 ( 1995) 218