Aviso: Por labores de mantenimiento y mejora del repositorio, el martes día 1 de Julio, Docta Complutense no estará operativo entre las 9 y las 14 horas. Disculpen las molestias.
 

An overview of generalised Kac-Moody algebras on compact real mainfolds

Loading...
Thumbnail Image

Full text at PDC

Publication date

2022

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier
Citations
Google Scholar

Citation

Abstract

A generalised notion of Kac-Moody algebra is defined using smooth maps from a compact real manifold to a finite-dimensional Lie group, by means of complete orthonormal bases for a Hermitian inner product on the manifold and a Fourier expansion. The Peter–Weyl theorem for the case of manifolds related to compact Lie groups and coset spaces is discussed, and appropriate Hilbert bases for the space of square-integrable functions are constructed. It is shown that such bases are characterised by the representation theory of the compact Lie group, from which a complete set of labelling operator is obtained. The existence of central extensions of generalised Kac-Moody algebras is analysed using a duality property of Hermitian operators on the manifold, and the corresponding root systems are constructed. Several applications of physically relevant compact groups and coset spaces are discussed.

Research Projects

Organizational Units

Journal Issue

Description

UCM subjects

Unesco subjects

Keywords

Collections