Poisson–Poincaré reduction for Field Theories

Thumbnail Image
Official URL
Full text at PDC
Publication Date
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
Google Scholar
Research Projects
Organizational Units
Journal Issue
Given a Hamiltonian system on a fiber bundle, there is a Poisson covariant formulation of the Hamilton equations. When a Lie group G acts freely, properly, preserving the fibers of the bundle and the Hamiltonian density is G-invariant, we study the reduction of this formulation to obtain an analogue of Poisson–Poincaré reduction for field theories. This procedure is related to the Lagrange–Poincaré reduction for field theories via a Legendre transformation. Finally, an application to a model of a charged strand evolving in an electric field is given.
Unesco subjects
[1] M. A. Berbel and M. Castrillón López. Reduction (by stages) in the whole Lagrange–Poincaré category. arXiv:1912.10763, 2019. [2] M. A. Berbel and M. Castrillón López. Lagrangian reduction by stages in field theory. arXiv: 2007.14854, 2020. [3] C. Blacker. Reduction of multisymplectic manifolds. Lett. Math. Phys., 111(3):Paper No. 64, 30, 2021. [4] H. Bursztyn, A. Cabrera, and D. Iglesias. Multisymplectic geometry and Lie groupoids. In Geometry, mechanics, and dynamics, volume 73 of Fields Inst. Commun., pages 57–73. Springer, New York, 2015. [5] S. Capriotti, V. A. Daz, E. G.-T. Andrs, and T. Mestdag. Cotangent bundle reduction and routh reduction for polysymplectic manifolds, 2022. [6] J. F. Cariñena, M. Crampin, and L. A. Ibort. On the multisymplectic formalism for first order field theories. Differential Geom. Appl., 1(4):345–374, 1991. [7] M. Castrillón López, P. L. García, and C. Rodrigo. Euler-Poincaré reduction in principal bundles by a subgroup of the structure group. J. Geom. Phys., 74:352–369, 2013. [8] M. Castrillón López, P. L. García Pérez, and T. S. Ratiu. Euler-Poincaré reduction on principal bundles. Lett. Math. Phys., 58(2):167–180, 2001. [9] M. Castrillón López and J. E. Marsden. Some remarks on Lagrangian and Poisson reduction for field theories. J. Geom. Phys., 48(1):52–83, 2003. [10] M. Castrillón López and T. S. Ratiu. Reduction in principal bundles: covariant Lagrange-Poincar´e equations. Comm. Math. Phys., 236(2):223–250, 2003. [11] H. Cendra, J. E. Marsden, and T. S. Ratiu. Lagrangian reduction by stages. Mem. Amer. Math. Soc., 152(722):1–108, 2001. [12] F. M. Ciaglia, F. Di Cosmo, A. Ibort, L. Marmo, G. Schiavone, and A. Zampini. The geometry of the solution space of first order hamiltonian field theories I: from particle dynamics to free electrodynamics. arXiv: 2208.14136, 2022. [13] F. M. Ciaglia, F. Di Cosmo, A. Ibort, L. Marmo, G. Schiavone, and A. Zampini. The geometry of the solution space of first order hamiltonian field theories II: non-abelian gauge theories. arXiv: 2208.14155, 2022. [14] J. de Lucas, X. Gràcia, X. Rivas, N. Román-Roy, and S. Vilariño. Reduction and reconstruction of multisymplectic Lie systems. J. Phys. A, 55(29):Paper No. 295204, 34, 2022. 32 [15] A. Echeverría-Enríquez, M. C. Muñoz Lecanda, and N. Román-Roy. Remarks on multisymplectic reduction. Rep. Math. Phys., 81(3):415–424, 2018. [16] D. C. P. Ellis, F. Gay-Balmaz, D. D. Holm, V. Putkaradze, and T. S. Ratiu. Symmetry reduced dynamics of charged molecular strands. Arch. Ration. Mech. Anal., 197(3):811–902, 2010. [17] D. C. P. Ellis, F. Gay-Balmaz, D. D. Holm, and T. S. Ratiu. Lagrange-Poincaré field equations. J. Geom. Phys., 61(11):2120–2146, 2011. [18] M. J. Gotay, J. Isenberg, J. E. Marsden, and R. Montgomery. Momentum maps and classical relativistic fields. part I: Covariant field theory. arXiv: 9801019, 2004. [19] C. Günther. The polysymplectic Hamiltonian formalism in field theory and calculus of variations. I. The local case. J. Differential Geom., 25(1):23–53, 1987. [20] D. D. Holm and R. I. Ivanov. Matrix G-strands. Nonlinearity, 27(6):1445–1469, 2014. [21] D. D. Holm, R. I. Ivanov, and J. R. Percival. G-strands. J. Nonlinear Sci., 22(4):517–551, 2012. [22] I. V. Kanatchikov. Canonical structure of classical field theory in the polymomentum phase space. Rep. Math. Phys., 41(1):49–90, 1998. [23] T. B. Madsen and A. Swann. Multi-moment maps. Adv. Math., 229(4):2287–2309, 2012. [24] T. B. Madsen and A. Swann. Closed forms and multi-moment maps. Geom. Dedicata, 165:25–52, 2013. [25] J. C. Marrero, N. Román-Roy, M. Salgado, and S. Vilariño. Reduction of polysymplectic manifolds. J. Phys. A, 48(5):055206, 43, 2015. [26] J. Marsden and A. Weinstein. Reduction of symplectic manifolds with symmetry. Rep. Mathematical Phys., 5(1):121–130, 1974. [27] J. E. Marsden, G. Misiolek, J.-P. Ortega, M. Perlmutter, and T. S. Ratiu. Hamiltonian Reduction by Stages, volume 1913 of Lecture Notes in Mathematics. Springer, Berlin, Heidelberg, 1 edition, 2007. [28] J. E. Marsden, R. Montgomery, P. J. Morrison, and W. B. Thompson. Covariant Poisson brackets for classical fields. Ann. Physics, 169(1):29–47, 1986. [29] J. E. Marsden and T. Ratiu. Reduction of Poisson manifolds. Lett. Math. Phys., 11(2):161–169, 1986. [30] J. E. Marsden and T. S. Ratiu. Introduction to Mechanics and Symmetry: A Basic Exposition of Classical Mechanical Systems, volume 17 of Texts in Applied Mathematics. Springer, New York, NY, 2 edition, 1999. [31] J. E. Marsden and A. Weinstein. Comments on the history, theory, and applications of symplectic reduction. In Quantization of singular symplectic quotients, volume 198 of Progr. Math., pages 1–19. Birkhäuser, Basel, 2001. [32] J.-P. Ortega and T. S. Ratiu. Momentum maps and Hamiltonian reduction, volume 222 of Progress in Mathematics. Birkhäuser Boston, Inc., Boston, MA, 2004. [33] J. M. Souriau. Structure of dynamical systems, volume 149 of Progress in Mathematics. Birkhäuser Boston, Inc., Boston, MA, 1997. [34] K. Uhlenbeck. Harmonic maps into Lie groups: classical solutions of the chiral model. J. Differential Geom., 30(1):1–50, 1989. [35] J. Vankerschaver, H. Yoshimura, and M. Leok. The Hamilton-Pontryagin principle and multi-Dirac structures for classical field theories. J. Math. Phys., 53(7):072903, 25, 2012. [36] H. Yoshimura and J. E. Marsden. Dirac cotangent bundle reduction. J. Geom. Mech., 1(1):87–158, 2009.