Person:
Rodríguez Agarrabeitia, Antonia

Loading...
Profile Picture
First Name
Antonia
Last Name
Rodríguez Agarrabeitia
Affiliation
Universidad Complutense de Madrid
Faculty / Institute
Óptica y Optometría
Department
Química Orgánica
Area
Química Orgánica
Identifiers
UCM identifierORCIDScopus Author IDWeb of Science ResearcherIDDialnet IDGoogle Scholar ID

Search Results

Now showing 1 - 10 of 16
  • Item
    Unprecedented induced axial chirality in a molecular BODIPY dye: strongly bisignated electronic circular dichroism in the visible region
    (Chemical Communications, 2013) Márquez Sánchez-Carnerero, Esther María; Moreno Jiménez, Florencio; Lora Maroto, Beatriz; Rodríguez Agarrabeitia, Antonia; Bañuelos Prieto, Jorge; Arbeloa, Teresa; López Arbeloa, Íñigo María; Ortíz García, María Josefa; Moya Cerero, Santiago de la
    Enantiomeric bis(BODIPYs) 1a and 1b exhibit strong bisignated ECD due to the formation of a stable helical conformation with induced axial chirality, which allows efficient excito coupling of the BODIPY chromophores in the Vis region.
  • Item
    Coumarin–BODIPY hybrids by heteroatom linkage: versatile, tunable and photostable dye lasers for UV irradiation
    (Physical Chemistry Chemical Physics, 2015) Esnal, Ixone; Duran-Sampedro, Gonzalo; Rodríguez Agarrabeitia, Antonia; Bañuelos, Jorge; García-Moreno, Inmaculada; Macías, Maria Ángeles ; Peña-Cabrera, Eduardo; López-Arbeloa, Iñigo; De la Moya, Santiago; Ortiz, Maria José
    Linking amino and hydroxycoumarins to BODIPYs through the amino or hydroxyl group lets the easy construction of unprecedented photostable coumarin–BODIPY hybrids with broadened and enhanced absorption in the UV spectral region, and outstanding wavelength-tunable laser action within the green-to-red spectral region (∼520–680 nm). These laser dyes allow the generation of a valuable tunable UV (∼260–350 nm) laser source by frequency doubling, which is essential to study accurately the photochemistry of biological molecules under solar irradiation. The tunability is achieved by selecting the substitution pattern of the hybrid. Key factors are the linking heteroatom (nitrogen vs. oxygen), the number of coumarin units joined to the BODIPY framework and the involved linking positions.
  • Item
    Spiranic BODIPYs: a ground-breaking design to improve the energy transfer in molecular cassettes
    (Chemical Communications, 2014) Márquez Sánchez-Carnerero, Esther María; Gartzia-Rivero, Leire; Moreno Jiménez, Florencio; Lora Maroto, Beatriz; Rodríguez Agarrabeitia, Antonia; Ortiz García, María Josefa; Bañuelos Prieto, Jorge; López Arbeloa, Íñigo María; Moya Cerero, Santiago De La
    Boosted excitation energy transfer in spiranic O BODIPY/polyarenecassettes, when compared with the parent non-spiranic (flexible) system, is highlighted as a proof for the ability of a new structural design to improve the energy transfer in molecular cassettes
  • Item
    Negishi reaction in BODIPY dyes. Unprecedented alkylation by palladium-catalyzed C–C coupling in boron dipyrromethene derivatives
    (RSC Advances, 2014) Durán Sampedro, Gonzalo; Palao, Eduardo; Rodríguez Agarrabeitia, Antonia; Moya Cerero, Santiago De La; Boens, Noël; Ortiz García, María Josefa
    Negishi reactions of 3-halogen and 3,5-dihalogen substituted BODIPYs with different organozinc reagents are reported as the first examples of this valuable palladium-catalyzed C–C coupling reaction into the family of the BODIPY dyes. It is demonstrated that the Negishi coupling is especially useful for obtaining interesting alkylated BODIPYs, including synthetically-valuable asymmetrically-3,5-disubstituted BODIPYs.
  • Item
    Synthesis and functionalization of new polyhalogenated BODIPY dyes. Study of their photophysical properties and singlet oxygen generation
    (Tetrahedron, 2012) Ortiz García, María Josefa; Rodríguez Agarrabeitia, Antonia; Durán Sampedro, Gonzalo; Bañuelos Prieto, Jorge; Arbeloa Lopez, Teresa; Massad, Walter A.; Montejano, Hernán A.; García, Norman A.; Lopez Arbeloa, Iñigo
    A theor. and exptl. study on the iodination of BODIPY dyes with different degrees of substitution has been developed. Polyhalogenated BODIPYs synthesized in this work are the first examples of this type of dyes with more than two halogen atoms in the BODIPY core and they can be selectively functionalized. Surprisingly, the position in which halogen is attached has a marked effect in the photophys. properties and modulates the fluorescence capacity of the resulting BODIPY. These iodinated BODIPYs are efficient singlet oxygen generators.
  • Item
    Development of Geometry-Controlled All-Orthogonal BODIPY Trimers for Photodynamic Therapy and Phototheragnosis
    (Organic Letters, 2022) Prieto Castañeda, Alejandro; García Garrido, Fernando; Díaz Norambuena, Carolina; Escriche Navarro, Blanca; García Fernández, Alba; Bañuelos, Jorge; Rebollar, Esther; García Moreno, Inmaculada; Martínez Máñez, Ramón; Moya Cerero, Santiago De La; Rodríguez Agarrabeitia, Antonia; Ortiz García, María Josefa
    We have established an easy synthetic protocol for selectively developing all-orthogonal BODIPY trimers with unprecedented geometries on the basis of selecting methyl oxidation versus electrophilic formylation of key dimeric precursors. Photophysical characterization together with biological assays unraveled the most suitable BODIPY−BODIPY geometrical arrangements within the trimer, forcing them to serve as molecular platforms for the development of new, advanced heavy-atom-free photosensitizers for photodynamic therapy and phototheragnosis.
  • Item
    Carboxylates versus Fluorines: Boosting the Emission Properties of Commercial BODIPYs in Liquid and Solid Media
    (Adv. Funct. Mater., 2013) Durán‐Sampedro, Gonzalo; Rodríguez Agarrabeitia, Antonia; Cerdán, Luis; Pérez Ojeda, María Eugenia; Costela, Angel; García‐Moreno, Inmaculada; Esnal, Ixone; Bañuelos, Jorge; López Arbeloa, Iñigo; Ortiz García, María Josefa
    A new and facile strategy for the development of photonic materials is presented that fufi lls the conditions of being effi cient, stable, and tunable laser emitters over the visible region of spectrum, with the possibility of being easily processable and cost-effective. This approach uses poly(methyl methacrylate) (PMMA) as a host for new dyes with improved effi ciency and photostability synthesized. Using a simple protocol, fl uorine atoms in the commercial (4,4-difl uoro-4-bora-3a,4a-diaza-s-indacene) ( F -BODIPY) by carboxylate groups. The new O -BODIPYs exhibit enhanced optical properties and laser behavior both in the liquid and solid phases compared to their commercial analogues. Lasing effi ciencies up to 2.6 times higher than those recorded for the commercial dyes are registered with high photostabilities since the laser output remain at 80% of the initial value after 100 000 pump pulses in the same position of the sample at a repetition rate of 30 Hz; the corresponding commercial dye entirely loses its laser action after only 12 000 pump pulses. Distributed feedback laser emission is demonstrated with organic fi lms incorporating new O -BODIPYs deposited onto quartz substrates engraved with appropriated periodical structures. These dyes exhibit laser thresholds up to two times lower than those of the corresponding parent dyes with lasing intensities up to one order of magnitude higher.
  • Item
    Formylation as a Chemical Tool to Modulate the Performance of Photosensitizers Based on Boron Dipyrromethene Dimers
    (International Journal of Molecular Sciences, 2023) Díaz Norambuena, Carolina; Avellanal Zaballa, Edurne; Prieto Castañeda, Alejandro; Bañuelos, Jorge; de la Moya, Santiago; Rodríguez Agarrabeitia, Antonia; Moya Cerero, Santiago De La; Ortiz, María J.
    Heavy-atom-free photosensitizers are envisioned as the next generation of photoactive molecules for photo-theragnosis. In this approach, and after suitable irradiation, a single molecular scaffold is able to visualize and kill tumour cells by fluorescence signalling and photodynamic therapy (PDT), respectively, with minimal side effects. In this regard, BODIPY-based orthogonal dimers have irrupted as suitable candidates for this aim. Herein, we analyse the photophysical properties of a set of formyl-functionalized BODIPY dimers to ascertain their suitability as fluorescent photosensitizers. The conducted computationally aided spectroscopic study determined that the fluorescence/singlet oxygen generation dual performance of these valuable BODIPY dimers not only depends on the BODIPY-BODIPY linkage and the steric hindrance around it, but also can be modulated by proper formyl functionalization at specific chromophoric positions. Thus, we propose regioselective formylation as an effective tool to modulate such a delicate photonic balance in BODIPY-based dimeric photosensitizers. The taming of the excited-state dynamics, in particular intramolecular charge transfer as the key underlying process mediating fluorescence deactivation vs. intersystem crossing increasing, could serve to increase fluorescence for brighter bioimaging, enhance the generation of singlet oxygen for killing activity, or balance both for photo-theragnosis.
  • Item
    BODIPYs revealing lipid droplets as valuable targets for photodynamic theragnosis
    (Chemical Communications, 2019) Tabero, Andrea; García-Garrido, Fernando; Prieto Castañeda, Alejandro; Palao, Eduardo; Rodríguez Agarrabeitia, Antonia; García-Moreno, Inmaculada; Villanueva Valdés, Miguel Ángel; Moya Cerero, Santiago De La; Ortiz, María José
    Endowing BODIPY PDT agents with the ability to probe lipid droplets is demonstrated to boost their phototoxicity, allowing the efficient use of highly fluorescent dyes (poor ROS sensitizers) as phototoxic agents. Conversely, this fact opens the way to the development of highly bright ROS photosensitizers for performing photodynamic theragnosis (fluorescence bioimaging and photodynamic therapy) from a single simple agent. On the other hand, the noticeable capability of some of the reported dyes to probe lipid droplets in different cell lines under different conditions reveals their use as privileged probes for advancing the study of interesting lipid droplets by fluorescence microscopy.
  • Item
    Increased laser action in commercial dyes from fluorination regardless of their skeleton
    (Laser Phys. Lett., 2014) Durán Sampedro, G.; Rodríguez Agarrabeitia, Antonia; Arbeloa Lopez, T.; Bañuelos, J.; López Arbeloa, I.; Chiara, J. L.; Garcia Moreno, I.; Ortiz García, María Josefa
    The direct and simple fluorination of representative organic laser dyes with emission covering the entire visible spectrum, from blue to red, including Coumarin 460, Pyrromethene 546, Rhodamine 6G and Perylene Red, enhances laser efficiencies by a factor up to 1.8 with respect to the corresponding non-fluorinated parent dyes. More importantly, fluorination also significantly enhances the photostability of the dyes, even under drastic laser pumping conditions.